Muutke küpsiste eelistusi

E-raamat: Multidisciplinary Introduction to Desalination

Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 60,83 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Although more than 70% of the globe is covered with water, only a small portion is suitable for direct human use, making the scarcity of freshwater one of our plant's most serious challenges. In this context "desalination", defined as "the removal of salt from water", is one of the possible solutions for overcoming our planet's municipal and industrial thirst.

By drawing upon the authoritative expertise of a remarkable team of international authors, this book aims to provide an encompassing and "multidisciplinary" introduction to various aspects of desalination. The forte of this publication is that it does not overtly focus on a particular sub-topic of desalination, but rather addresses the topic as a whole. In other words, the unique assortment of reader-friendly chapters is designed to strike a delicate balance between the technical and non-technical.

The book is divided into five general sections:

* The first section presents an overview of water scarcity, followed by a review of integrated water management and the alternatives to desalination. The fundamentals of desalination are provided, including simple water chemistry;
* The second section covers the conventional technologies of today, including thermal and membrane desalination processes. The topics of pre- and post- treatment are given due credit, as no desalination plant can operate without them;
* The third section reviews the history of how desalination technologies originated, including a review of today's R&D activities and cutting edge research. The processes and engineering applied for membrane manufacturing are also presented;
* Section four is concerned with energy and environmental issues, including the application of renewable and nuclear energy, minimization of energy usage and the water-energy-nexus, brine management, and environmental impacts;
* Finally, section five covers the social and commercial issues, ranging from rural desalination, to the politics of desalination. Desalination costs and feasibility are presented, as well as issues in business development and the future market prospects.

Effectively, A Multidisciplinary Introduction to Desalination aims to be a holistic go-to-compendium for anyone seeking a balanced understanding of the various facets of desalination.
Foreword I xxi
Foreword II xxv
Preface xxvii
List of Contributors xxxi
List of Figures xxxvii
List of Tables xlix
List of Abbreviations liii
Part I: Introduction
1 Water Scarcity: Where We Stand
3(10)
Eric M.V. Hoek
1.1 Introduction
3(3)
1.2 Global Drivers and Trends
6(3)
1.2.1 Climate Change
6(1)
1.2.2 Urbanization
6(1)
1.2.3 Water as a Human Right
7(1)
1.2.4 Water and Conflict
8(1)
1.3 "Food-Energy-Water" Nexus
9(1)
1.4 Concluding Remarks
9(1)
References
10(3)
2 Alternative Freshwater Solutions to Desalination
13(28)
Arjen van Nieuwenhuijzen
Jaap Klein
Cor Merks
Ebbing van Tuinen
2.1 Introduction
13(3)
2.1.1 Background
14(1)
2.1.2 Sustainable Alternatives to Desalination
15(1)
2.1.3 Smart and Innovative Alternatives
16(1)
2.2 Integrated Freshwater Management Solutions
16(5)
2.2.1 Introduction
16(1)
2.2.2 Solutions for Delta Areas and Seasonal Dry Areas in General
17(1)
2.2.3 Solutions for Agricultural Areas
18(2)
2.2.4 Solutions for Natural Reserves
20(1)
2.2.5 Solutions for the Built Environment
20(1)
2.2.6 An Integrated Solution: Freshwater Wetlands
20(1)
2.3 Rainwater Harvesting: Capture and Use of Rain and Storm Water
21(10)
2.3.1 Introduction and Principles
21(2)
2.3.2 Benefits and Challenges of Rainwater Harvesting
23(3)
2.3.3 Components of a Rainwater Harvesting System
26(1)
2.3.3.1 Rainwater harvesting using natural components
27(1)
2.3.4 Calculating the Potential of Rainwater Harvesting
28(2)
2.3.5 Additional Information
30(1)
2.4 Reclamation of Fresh Used Water (Greywater Reuse)
31(5)
2.4.1 Introduction
31(1)
2.4.2 Greywater Reuse
31(2)
2.4.3 Used Water Treatment Technologies
33(1)
2.4.3.1 Physical-chemical used treatment systems
33(1)
2.4.3.2 Biological used water treatment systems
35(1)
2.5 Concluding Remarks
36(1)
References
37(4)
3 Fundamentals of Desalination Technology
41(26)
Alireza Bazargan
Blanca Salgado
3.1 Introduction
41(4)
3.2 Definitions
45(2)
3.3 Unit Operations
47(4)
3.4 Desalination Technologies
51(10)
3.4.1 Thermal (and Evaporative) Technologies
51(1)
3.4.1.1 Multi-Stage Flash Distillation (MSF)
51(1)
3.4.1.2 Multi-Effect Distillation (MED)
52(1)
3.4.1.3 Thermal Vapor Compression (TVC)
53(1)
3.4.1.4 Mechanical Vapor Compression (MVC)
54(1)
3.4.1.5 Membrane Distillation (MD)
54(1)
3.4.1.6 Freezing
55(1)
3.4.2 Membrane Technologies
55(1)
3.4.2.1 Reverse Osmosis (RO)
55(1)
3.4.2.2 Forward Osmosis (FO)
57(1)
3.4.2.3 Electrodialysis (ED) and Electrodialysis Reversal (EDR)
57(1)
3.4.3 Other Technologies
58(1)
3.4.3.1 Hydrate Formation
58(1)
3.4.3.2 Ion Exchange (IX)
58(1)
3.4.3.3 Capacitive DeIonizaiton (CDI)
59(1)
3.4.3.4 Solvent Extraction
60(1)
3.4.3.5 De-Humidification
60(1)
3.4.4 Hybrid Systems
60(1)
3.5 Conclusion
61(1)
References
62(5)
4 Water Chemistry and Desalinated Water Quality
67(28)
Alireza Bazargan
Amir Jafari
Mohammad Hossein Behnoud
4.1 Introduction
67(6)
4.1.1 Boron
68(1)
4.1.2 Bromide
69(1)
4.1.3 Calcium and Magnesium
70(1)
4.1.4 Fluoride and Other Supplements
70(2)
4.1.5 Organics
72(1)
4.1.6 Potassium and Sodium
73(1)
4.2 The Carbonate System
73(3)
4.3 Water Hardness
76(3)
4.4 Sodium Adsorption Ratio
79(2)
4.5 Acidity and Buffering Capacity
81(1)
4.6 Corrosivity
82(3)
4.7 Indexes
85(4)
4.8 Conclusion
89(1)
References
90(5)
Part II: Unit Operations
5 Thermal Processes
95(60)
Ibrahim S. Al-Mutaz
5.1 Introduction
95(1)
5.2 Multi-Effect Distillation (MED)
96(7)
5.2.1 Types of MED Tube Arrangements
97(1)
5.2.1.1 Horizontal tube arrangement
97(1)
5.2.1.2 Vertical tube arrangement
98(1)
5.2.1.3 Vertically stacked tube bundles
98(1)
5.2.2 Conventional MED Process
98(3)
5.2.3 Multi-Effect Distillation with Thermal Vapor Compression (MED-TVC)
101(1)
5.2.3.1 MED-TVC process description
102(1)
5.3 Multi-Stage Flash (MSF)
103(7)
5.3.1 MSF Configurations
104(3)
5.3.2 MSF Condenser Tube Configurations
107(2)
5.3.3 MSF Process Description
109(1)
5.4 Vapor Compression Distillation (VCD)
110(4)
5.4.1 Mechanical Vapor Compression (MVC)
112(1)
5.4.2 Thermal Vapor Compression (TVC)
113(1)
5.5 Other Thermal Processes
114(16)
5.5.1 Freezing
114(5)
5.5.2 Solar Desalination
119(5)
5.5.3 Humidification-Dehumidification
124(2)
5.5.4 Membrane Distillation
126(1)
5.5.4.1 Direct Contact Membrane Distillation (DCMD)
127(1)
5.5.4.2 Air Gap Membrane Distillation (AGMD)
127(1)
5.5.4.3 Vacuum Membrane Distillation (VMD)
127(1)
5.5.4.4 Sweep Gas Membrane Distillation (SGMD)
128(2)
5.6 Operational Experience of Thermal Desalination Processes
130(19)
5.6.1 Pretreatment and Scale Control
130(4)
5.6.2 Efficiency of Thermal Desalination Processes
134(1)
5.6.3 Design Experience of Large MSF and MED-TVC Plants
135(4)
5.6.4 Impact of Non-Condensable Gases (NCG)
139(3)
5.6.5 Material Selection
142(1)
5.6.6 Maintenance Procedures
143(5)
5.6.7 Evaporator Start-Up
148(1)
References
149(6)
6 Membrane Desalination Technologies
155(46)
Dongxu Yan
6.1 Introduction to Membrane Desalination Technologies
155(1)
6.2 Reverse Osmosis
155(24)
6.2.1 Introduction to RO Membrane Technology
155(2)
6.2.2 Membrane Materials
157(2)
6.2.3 Principles and Modeling of Membrane Systems
159(1)
6.2.3.1 Membrane recovery
159(1)
6.2.3.2 Permeate flux
160(1)
6.2.3.3 Mass balance
160(1)
6.2.3.4 Membrane permeation coefficient (A) and salt transport coefficient (B)
161(1)
6.2.3.5 Membrane rejection
161(1)
6.2.3.6 Trans-Membrane Pressure (TMP)
161(1)
6.2.3.7 Net Driving Pressure (NDP)
162(1)
6.2.3.8 Osmotic pressure
162(1)
6.2.3.9 Langelier Saturation Index (LSI)
162(1)
6.2.3.10 Silt Density Index (SDI)
163(1)
6.2.4 RO Separation System Design
164(3)
6.2.5 Restrictions of Membrane Application in Desalination
167(2)
6.2.6 Concentration Polarization in Membrane Desalination
169(2)
6.2.7 RO Membrane Pretreatment
171(1)
6.2.8 RO Membrane Chemical Cleaning
172(2)
6.2.9 RO Projection Software
174(5)
6.3 Forward Osmosis (FO)
179(9)
6.3.1 Introduction to FO Membrane Technology
179(2)
6.3.2 Forward Osmosis Membranes and Modules
181(3)
6.3.3 Draw Solutions for the FO Process
184(1)
6.3.4 CP in FO Processes and FO Membrane Fouling
184(2)
6.3.5 Advantages and Disadvantages of the FO Process
186(2)
6.4 Electrodialysis (ED) and Electodialysis Reversal (EDR)
188(8)
6.4.1 Introduction to ED and EDR Technologies
188(1)
6.4.2 ED/EDR Process Design
189(2)
6.4.3 ED/EDR Membranes
191(2)
6.4.4 Membrane Spacers
193(1)
6.4.5 ED/EDR Electrodes
194(1)
6.4.6 Comparison between ED/EDR and RO
195(1)
References
196(5)
7 Pretreatment
201(36)
Nikolay Voutchkov
7.1 Introduction
201(3)
7.2 Overview of Granular Media Filtration Technologies
204(3)
7.3 Seawater Conditioning Prior to Granular Filtration
207(3)
7.4 Seawater Pretreatment Prior to Filtration
210(5)
7.4.1 Sedimentation
210(1)
7.4.2 Dissolved Air Flotation
211(4)
7.5 Selection of Granular Filter Media
215(1)
7.6 Selection of the Type of Granular Media Filter
216(5)
7.6.1 Removal of Algal Material from Seawater
218(2)
7.6.2 Useful Life of the Filter Structure
220(1)
7.6.3 Solids Retention Capacity and Handling of Turbidity Spikes
220(1)
7.6.4 Costs
220(1)
7.7 Membrane Filtration Overview
221(8)
7.7.1 Seawater Conditioning and Pretreatment Prior to Membrane Filtration
226(2)
7.7.2 Considerations for Selecting Between OF and MF Pretreatment
228(1)
7.8 Considerations for Selecting Between Pressure and Vacuum-Driven Membrane Filtration
229(1)
7.8.1 Source Water Quality Variations
229(1)
7.8.2 Construction Costs and Energy Requirements
230(1)
7.9 Lessons Learned from Existing MF/UF Systems
230(3)
7.10 Concluding Remarks
233(1)
References
233(4)
8 Post-Treatment
237(28)
Alireza Bazargan
Reza Mokhtari
Mohammad Shamszadeh
8.1 Introduction
237(2)
8.2 Post-Treatment Processes
239(10)
8.2.1 Blending
239(2)
8.2.2 Direct Dosage of Chemicals
241(1)
8.2.2.1 Design Considerations for Ca(OH)2 + CO2 Systems
242(1)
8.2.3 Limestone (Calcium Carbonate) Dissolution
243(4)
8.2.4 Dolomite Dissolution
247(2)
8.3 Disinfection
249(11)
8.3.1 The CT Value
252(1)
8.3.2 Comparison of Various Disinfection Methods
253(1)
8.3.3 Residual Disinfection
253(5)
8.3.4 Disinfectant Decay Kinetics
258(2)
8.4 Conclusion
260(1)
References
260(5)
Part III: Science and Technology
9 The Origins of Today's Desalination Technologies
265(30)
Jim Birkett
9.1 Background
265(2)
9.2 The First Tentative Steps
267(4)
9.3 The Appearance of an Industry in the 1800s
271(6)
9.4 The Early Twentieth Century-Evaporative Advancements
277(3)
9.5 The Early Twentieth Century: Membrane Developments
280(1)
9.5.1 The Influence of World War II
281(1)
9.6 The 1950s
281(4)
9.7 The 1960s
285(5)
9.8 Post 1960s
290(1)
References
290(5)
10 Research and Development Management
295(28)
John Peichel
Alireza Bazargan
10.1 Introduction
295(4)
10.2 The Customer
299(3)
10.3 The Invention
302(2)
10.4 Patents
304(6)
10.5 Models
310(2)
10.6 Data
312(2)
10.7 Time
314(2)
10.8 The Business Aspect: Costs, Revenue, Profit
316(2)
10.9 Conclusion
318(2)
References
320(3)
11 Membrane Chemistry and Engineering
323(32)
Steven Jons
Abhishek Shrivastava
Ian A. Tomlinson
Mou Paul
Abhishek Roy
11.1 Introduction
323(2)
11.2 Membrane Processes
325(5)
11.2.1 Reverse Osmosis (RO)
326(1)
11.2.1.1 RO membrane made by phase inversion
326(1)
11.2.1.2 RO membranes made by interfacial polymerization
328(2)
11.3 Nanofiltration
330(7)
11.3.1 Forward Osmosis (FO)
332(1)
11.3.2 Electrodialysis (ED) and Related Processes
333(2)
11.3.3 Membrane Distillation (MD)
335(1)
11.3.4 Microfiltration and Ultrafiltration
336(1)
11.4 Configurations
337(10)
11.4.1 Membrane Configurations
337(2)
11.4.2 Flow Path Considerations
339(2)
11.4.3 Module Configurations
341(6)
11.5 Future Developments
347(3)
References
350(5)
12 State-of-the-Art Desalination Research
355(30)
Seyed Hamed Aboutalebi
Alexandros Yfantis
Nikolaos Yfantis
12.1 Introduction
355(1)
12.2 RO Technologies
356(2)
12.3 Current State-of-the-Art Materials for Novel Membrane-Based Processes
358(6)
12.4 Forward Osmosis (FO)
364(1)
12.5 Aquaporin Membranes
365(1)
12.6 Thermal-Based Processes
366(3)
12.6.1 Membrane Distillation
366(1)
12.6.2 Pervaporation (PV)
367(2)
12.7 Novel Electrically-Driven Processes
369(8)
12.7.1 Capacitive Deionization (CDI)
369(1)
12.7.2 Microbial Desalination Cell (MDC)
370(7)
References
377(8)
Part IV: Energy and Environment
13 Desalination Powered by Renewable and Nuclear Energy Sources
385(30)
Veera Gnaneswar Gude
13.1 Desalination Technologies and Renewable Energy Coupling Schemes
385(2)
13.2 Global Overview
387(1)
13.3 Solar Energy for Desalination
388(7)
13.3.1 Direct Solar Desalination: Solar Stills
390(1)
13.3.2 Indirect Solar Desalination Using Solar Collectors
391(2)
13.3.3 Solar PV-RO
393(2)
13.4 Wind Energy for Desalination
395(3)
13.5 Geothermal Energy for Desalination
398(3)
13.6 Wave Energy for Desalination
401(3)
13.7 Nuclear Energy for Desalination
404(4)
13.7.1 Experience with Nuclear Desalination
406(2)
13.8 Conclusion and Selection Criteria
408(2)
References
410(5)
14 Energy Consumption and Minimization
415(38)
Konstantinos Plakas
Dimitrios Sioutopoulos
Anastasios Karabelas
14.1 Introduction
415(1)
14.2 Energy Issues in Desalination
415(5)
14.2.1 Interrelation between Water and Energy
415(2)
14.2.2 Energy Demand for Desalination
417(3)
14.3 SEC in Membrane-Based Processes
420(13)
14.3.1 Energy Consumption in RO Desalination
420(2)
14.3.2 Technological Improvements to Minimize Losses and to Increase Energy Recovery
422(1)
14.3.2.1 High efficiency pumps
424(1)
14.3.2.2 Energy recovery devices
424(1)
14.3.2.3 New generation membranes
426(1)
14.3.2.4 Plant design and operation
428(1)
14.3.2.5 Development of novel energy-efficient desalination technologies
429(1)
14.3.2.6 Utilization of renewable energies
433(1)
14.4 SEC in Thermal Processes
433(4)
14.4.1 Technological Improvements to Increase Energy Efficiency
435(1)
14.4.2 Dual-Purpose Power-Desalting Water Plants
436(1)
14.5 SEC in Hybrid Systems
437(2)
14.6 Renewable Energy (RE) Utilization for Water Desalination
439(2)
14.7 Conclusions and Future R&D
441(1)
References
442(11)
15 Brine Management
453(36)
Christopher Bellona
15.1 Introduction
453(1)
15.2 Desalination Brine/Concentrate Characteristics and Disposal
454(5)
15.2.1 Seawater Desalination
455(1)
15.2.2 Brackish Water Desalination
456(1)
15.2.3 Desalination for Potable Water Reuse
457(2)
15.3 Technologies for Brine/Concentrate Treatment
459(9)
15.3.1 Reverse Osmosis and Nanofiltration
459(1)
15.3.2 Electrodialysis and Electrodialysis Reversal
460(2)
15.3.3 Evaporation Ponds and Solar Evaporation
462(1)
15.3.4 Distillation and Evaporation Systems
463(1)
15.3.5 Membrane Distillation/Crystallization
464(1)
15.3.6 Precipitation and Crystallization
465(2)
15.3.7 Ion Exchange
467(1)
15.3.8 Other Notable Processes
468(1)
15.4 Implementation of Brine/Concentrate Minimization
468(4)
15.5 Extraction of Constituents from Brine/Concentrate
472(8)
15.5.1 Bromine
472(1)
15.5.2 Calcium
472(1)
15.5.3 Chlorine and Sodium Hydroxide
473(1)
15.5.4 Lithium
474(1)
15.5.5 Magnesium
474(2)
15.5.6 Nitrogen and Phosphorous
476(1)
15.5.7 Potassium
477(1)
15.5.8 Sodium
478(1)
15.5.9 Other Notable Commodities
479(1)
15.5.10 Economic Considerations
480(1)
15.6 Conclusion
480(1)
References
481(8)
16 Environmental Impacts of Desalination Plants
489(42)
Karim Bourouni
16.1 Introduction
489(2)
16.2 Health Issues
491(2)
16.2.1 Aesthetics and Water Stability
491(1)
16.2.2 Blending Waters
492(1)
16.2.3 Nutritionally Desirable Components
492(1)
16.2.4 Chemicals and Materials Used in Water Production
492(1)
16.3 Safety Issues
493(1)
16.4 Environmental Impacts
493(20)
16.4.1 Seawater Intakes and Pretreatment
494(1)
16.4.1.1 Intakes
494(1)
16.4.1.2 Pretreatment
496(1)
16.4.2 Reject Streams and Outfalls (Impact of Brine Discharge)
497(1)
16.4.2.1 Salinity
504(1)
16.4.2.2 Temperature
505(1)
16.4.2.3 Antifouling additives
506(1)
16.4.2.4 Residual biocides
506(1)
16.4.2.5 Coagulants
508(1)
16.4.2.6 Antiscalants
508(1)
16.4.2.7 Metals
509(1)
16.4.2.8 Antifoaming agents (Thermal plants only)
511(1)
16.4.2.9 Cleaning chemicals
511(1)
16.4.3 Air Quality Impacts
512(1)
16.5 Mitigating the Impact of Desalination on the Environment
513(3)
16.5.1 Source Water Intake
513(1)
16.5.2 Reject Streams
514(1)
16.5.3 Energy Use
515(1)
16.5.4 Site Selection for Impact Mitigation
516(1)
16.6 Avoiding Possible Disturbances
516(1)
16.7 Life Cycle Assessment of Desalination Technologies
517(3)
16.7.1 LCA Methodology
517(1)
16.7.1.1 Phase 1: Goal and scope definition
518(1)
16.7.1.2 Phase 2: Life cycle inventory
519(1)
16.7.1.3 Phase 3: Life cycle impact assessment
519(1)
16.7.1.4 Phase 4: Interpretation
519(1)
16.7.2 Main Results from Desalination LCA Studies
519(1)
16.8 Conclusions
520(6)
References
526(5)
Part V: Social and Commercial Issues
17 Rural Desalination
531(28)
Leila Karimi
Abbas Ghassemi
17.1 Introduction
531(3)
17.2 Factors that Affect the Success of Rural Desalination Systems
534(16)
17.2.1 Water Resources
535(1)
17.2.2 Water Needs
535(1)
17.2.3 Energy Sources
536(3)
17.2.4 Technological Factors
539(3)
17.2.5 Social Factors
542(1)
17.2.5.1 Community involvement
542(1)
17.2.5.2 Institutions and social power
544(1)
17.2.5.3 Cultural issues
544(1)
17.2.5.4 Gender issues
545(1)
17.2.5.5 Religious issues
547(1)
17.2.6 Economic Aspects
548(2)
17.3 Case Studies
550(3)
17.3.1 Case Study of an Unsuccessful Project: Solar Stills on the Greek Island of Kimolos
550(1)
17.3.1.1 Case study of a successful project: Photovoltaic reverse osmosis in Ksar Ghilene, Tunisia
551(2)
References
553(6)
18 Society, Politics, and Desalination
559(16)
David Zetland
18.1 Introduction
559(1)
18.2 Separating and Mixing Water
560(3)
18.2.1 Political Groups and Separate Waters
561(2)
18.3 Social Groups and Collective Costs and Benefits
563(1)
18.4 Society, Politics, and Technology
564(1)
18.5 Examples of Harmful and Helpful Desalination
565(5)
18.5.1 Israel and Singapore
565(3)
18.5.2 San Diego and Monterey
568(1)
18.5.3 Saudi Arabia and United Arab Emirates
569(1)
18.6 Desalination without Regret
570(1)
References
571(4)
19 Desalination Costs and Economic Feasibility
575(22)
Jadwiga R. Ziolkowska
19.1 Introduction
575(2)
19.2 Definition and Breakdown of Desalination Costs
577(8)
19.2.1 Capital Costs
577(3)
19.2.2 Operational and Maintenance Costs
580(1)
19.2.2.1 Disposal costs
582(1)
19.2.2.2 Energy costs
583(2)
19.3 Determining the Final Cost and Price of Desalinated Water
585(6)
19.4 Predictions about Future Desalination Costs
591(1)
References
592(5)
20 The Business of Desalination
597(48)
Tom Scotney
Simeon Pinder
20.1 Introduction
597(5)
20.2 Key Markets
602(6)
20.2.1 The Middle East and North Africa (MENA)
604(1)
20.2.2 Europe
605(1)
20.2.3 Americas
606(1)
20.2.4 Asia Pacific
606(1)
20.2.5 Sub-Saharan Africa
607(1)
20.3 Technology and Energy
608(3)
20.3.1 Equipment and Innovation
610(1)
20.4 Finance and Companies
611(5)
20.4.1 Desalination Companies
614(1)
20.4.2 Finance
615(1)
20.5 Looking Forward
616(26)
References
642(3)
Index 645(14)
About the Editor 659
Alireza Bazargan