Muutke küpsiste eelistusi

Next Generation Arithmetic: Third International Conference, CoNGA 2022, Singapore, March 13, 2022, Revised Selected Papers 1st ed. 2022 [Pehme köide]

Edited by , Edited by
  • Formaat: Paperback / softback, 135 pages, kõrgus x laius: 235x155 mm, kaal: 232 g, 34 Illustrations, color; 13 Illustrations, black and white; VII, 135 p. 47 illus., 34 illus. in color., 1 Paperback / softback
  • Sari: Lecture Notes in Computer Science 13253
  • Ilmumisaeg: 14-Jul-2022
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031097785
  • ISBN-13: 9783031097782
  • Pehme köide
  • Hind: 57,96 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 68,19 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 135 pages, kõrgus x laius: 235x155 mm, kaal: 232 g, 34 Illustrations, color; 13 Illustrations, black and white; VII, 135 p. 47 illus., 34 illus. in color., 1 Paperback / softback
  • Sari: Lecture Notes in Computer Science 13253
  • Ilmumisaeg: 14-Jul-2022
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031097785
  • ISBN-13: 9783031097782
This book constitutes the refereed proceedings of the Third International Conference on Next Generation Arithmetic, CoNGA 2022, which was held in Singapore, during March 1–3, 2022. 
 
The 8 full papers included in this book were carefully reviewed and selected from 12 submissions. They deal with emerging technologies for computer arithmetic focusing on the demands of both AI and high-performance computing. 

On the Implementation of Edge Detection Algorithms with SORN Arithmetic.- A Posit8 Decompression Operator for Deep Neural Network Inference.- Qtorch+: Next Generation Arithmetic for Pytorch Machine Learning.- ACTION: Automated Hardware-Software Codesign Framework for Low-precision Numerical Format SelecTION in TinyML.- MultiPosits: Universal Coding of Rn.- Comparing Different Decodings for Posit Arithmetic.- Universal?: Reliable, Reproducible, and Energy-Efficient Numerics.- Small reals representations for Deep Learning at the edge: a comparison.