Preface to the Second Edition |
|
ix |
|
Preface to the First Edition |
|
xi |
|
|
|
1 |
(14) |
|
1.0 Chaos, Fractals, and Dynamics |
|
|
1 |
(1) |
|
1.1 Capsule History of Dynamics |
|
|
2 |
(2) |
|
1.2 The Importance of Being Nonlinear |
|
|
4 |
(5) |
|
1.3 A Dynamical View of the World |
|
|
9 |
(6) |
Part I One-Dimensional Flows |
|
|
|
15 |
(30) |
|
|
15 |
(1) |
|
2.1 A Geometric Way of Thinking |
|
|
16 |
(2) |
|
2.2 Fixed Points and Stability |
|
|
18 |
(3) |
|
|
21 |
(3) |
|
2.4 Linear Stability Analysis |
|
|
24 |
(2) |
|
2.5 Existence and Uniqueness |
|
|
26 |
(2) |
|
2.6 Impossibility of Oscillations |
|
|
28 |
(2) |
|
|
30 |
(2) |
|
2.8 Solving Equations on the Computer |
|
|
32 |
(4) |
|
|
36 |
(9) |
|
|
45 |
(50) |
|
|
45 |
(1) |
|
3.1 Saddle-Node Bifurcation |
|
|
46 |
(5) |
|
3.2 Transcritical Bifurcation |
|
|
51 |
(3) |
|
|
54 |
(2) |
|
3.4 Pitchfork Bifurcation |
|
|
56 |
(6) |
|
3.5 Overdamped Bead on a Rotating Hoop |
|
|
62 |
(8) |
|
3.6 Imperfect Bifurcations and Catastrophes |
|
|
70 |
(4) |
|
|
74 |
(6) |
|
|
80 |
(15) |
|
|
95 |
(30) |
|
|
95 |
(1) |
|
4.1 Examples and Definitions |
|
|
95 |
(2) |
|
|
97 |
(1) |
|
4.3 Nonuniform Oscillator |
|
|
98 |
(5) |
|
|
103 |
(2) |
|
|
105 |
(4) |
|
4.6 Superconducting Josephson Junctions |
|
|
109 |
(6) |
|
|
115 |
(10) |
Part II Two-Dimensional Flows |
|
|
|
125 |
(21) |
|
|
125 |
(1) |
|
5.1 Definitions and Examples |
|
|
125 |
(6) |
|
5.2 Classification of Linear Systems |
|
|
131 |
(8) |
|
|
139 |
(3) |
|
|
142 |
(4) |
|
|
146 |
(52) |
|
|
146 |
(1) |
|
|
146 |
(3) |
|
6.2 Existence, Uniqueness, and Topological Consequences |
|
|
149 |
(2) |
|
6.3 Fixed Points and Linearization |
|
|
151 |
(5) |
|
|
156 |
(4) |
|
|
160 |
(4) |
|
|
164 |
(4) |
|
|
168 |
(6) |
|
|
174 |
(7) |
|
|
181 |
(17) |
|
|
198 |
(46) |
|
|
198 |
(1) |
|
|
199 |
(2) |
|
7.2 Ruling Out Closed Orbits |
|
|
201 |
(4) |
|
7.3 Poincare-Bendixson Theorem |
|
|
205 |
(7) |
|
|
212 |
(1) |
|
7.5 Relaxation Oscillations |
|
|
213 |
(4) |
|
7.6 Weakly Nonlinear Oscillators |
|
|
217 |
(13) |
|
|
230 |
(14) |
|
|
244 |
(65) |
|
|
244 |
(1) |
|
8.1 Saddle-Node, Transcritical, and Pitchfork Bifurcations |
|
|
244 |
(7) |
|
|
251 |
(6) |
|
8.3 Oscillating Chemical Reactions |
|
|
257 |
(7) |
|
8.4 Global Bifurcations of Cycles |
|
|
264 |
(4) |
|
8.5 Hysteresis in the Driven Pendulum and Josephson Junction |
|
|
268 |
(8) |
|
8.6 Coupled Oscillators and Quasiperiodicity |
|
|
276 |
(5) |
|
|
281 |
(6) |
|
|
287 |
(22) |
Part III Chaos |
|
|
|
309 |
(46) |
|
|
309 |
(1) |
|
|
310 |
(9) |
|
9.2 Simple Properties of the Lorenz Equations |
|
|
319 |
(6) |
|
9.3 Chaos on a Strange Attractor |
|
|
325 |
(8) |
|
|
333 |
(4) |
|
9.5 Exploring Parameter Space |
|
|
337 |
(5) |
|
9.6 Using Chaos to Send Secret Messages |
|
|
342 |
(6) |
|
|
348 |
(7) |
|
|
355 |
(50) |
|
|
355 |
(1) |
|
10.1 Fixed Points and Cobwebs |
|
|
356 |
(4) |
|
10.2 Logistic Map: Numerics |
|
|
360 |
(4) |
|
10.3 Logistic Map: Analysis |
|
|
364 |
(4) |
|
|
368 |
(5) |
|
|
373 |
(3) |
|
10.6 Universality and Experiments |
|
|
376 |
(10) |
|
|
386 |
(8) |
|
|
394 |
(11) |
|
|
405 |
(24) |
|
|
405 |
(1) |
|
11.1 Countable and Uncountable Sets |
|
|
406 |
(2) |
|
|
408 |
(3) |
|
11.3 Dimension of Self-Similar Fractals |
|
|
411 |
(5) |
|
|
416 |
(2) |
|
11.5 Pointwise and Correlation Dimensions |
|
|
418 |
(5) |
|
|
423 |
(6) |
|
|
429 |
(31) |
|
|
429 |
(1) |
|
12.1 The Simplest Examples |
|
|
429 |
(6) |
|
|
435 |
(5) |
|
|
440 |
(3) |
|
12.4 Chemical Chaos and Attractor Reconstruction |
|
|
443 |
(4) |
|
12.5 Forced Double-Well Oscillator |
|
|
447 |
(7) |
|
|
454 |
(6) |
Answers to Selected Exercises |
|
460 |
(10) |
References |
|
470 |
(13) |
Author Index |
|
483 |
(4) |
Subject Index |
|
487 |
|