Muutke küpsiste eelistusi

Numerical Fourier Analysis 1st ed. 2018 [Kõva köide]

  • Formaat: Hardback, 618 pages, kõrgus x laius: 235x155 mm, kaal: 1112 g, 30 Illustrations, color; 21 Illustrations, black and white; XVI, 618 p. 51 illus., 30 illus. in color., 1 Hardback
  • Sari: Applied and Numerical Harmonic Analysis
  • Ilmumisaeg: 28-Feb-2019
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030043053
  • ISBN-13: 9783030043056
  • Kõva köide
  • Hind: 154,41 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Formaat: Hardback, 618 pages, kõrgus x laius: 235x155 mm, kaal: 1112 g, 30 Illustrations, color; 21 Illustrations, black and white; XVI, 618 p. 51 illus., 30 illus. in color., 1 Hardback
  • Sari: Applied and Numerical Harmonic Analysis
  • Ilmumisaeg: 28-Feb-2019
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030043053
  • ISBN-13: 9783030043056
This book offers a unified presentation of Fourier theory and corresponding algorithms emerging from new developments in function approximation using Fourier methods.





It starts with a detailed discussion of classical Fourier theory to enable readers to grasp the construction and analysis of advanced fast Fourier algorithms introduced in the second part, such as  nonequispaced  and sparse FFTs in higher dimensions.





Lastly, it contains a selection of numerical applications, including recent research results on nonlinear function approximation by exponential sums.





The code of most of the presented algorithms is available in the authors public domain software packages.





Students and researchers alike benefit from this unified presentation of Fourier theory and corresponding algorithms.
Fourier series.- Fourier transforms.- Discrete Fourier
transforms.- Multidimensional Fourier methods.- Fast Fourier
transforms.- Chebyshev methods and fast DCT algorithms.- Fast Fourier
transforms for nonequispaced data.- High dimensional FFT.- Numerical
applications of DFT.- Prony method for reconstruction of structured functions.