Muutke küpsiste eelistusi

Numerical Methods in Finance [Pehme köide]

Edited by (Institut National de Recherche en Informatique et en Automatique (INRIA), Rocquencourt), Edited by (University of Bath)
  • Formaat: Paperback / softback, 340 pages, kõrgus x laius x paksus: 229x153x19 mm, kaal: 518 g, 15 Tables, unspecified; 20 Line drawings, unspecified
  • Sari: Publications of the Newton Institute
  • Ilmumisaeg: 24-Apr-2008
  • Kirjastus: Cambridge University Press
  • ISBN-10: 0521061695
  • ISBN-13: 9780521061698
Teised raamatud teemal:
  • Formaat: Paperback / softback, 340 pages, kõrgus x laius x paksus: 229x153x19 mm, kaal: 518 g, 15 Tables, unspecified; 20 Line drawings, unspecified
  • Sari: Publications of the Newton Institute
  • Ilmumisaeg: 24-Apr-2008
  • Kirjastus: Cambridge University Press
  • ISBN-10: 0521061695
  • ISBN-13: 9780521061698
Teised raamatud teemal:
Numerical Methods in Finance has emerged as a discipline at the intersection of probability theory, finance and numerical analysis. This book, based on lectures given at the Newton Institute as part of a broader programme, describes a wide variety of numerical methods used in financial analysis: computation of option prices, especially of American option prices, by finite difference and other methods; numerical solution of portfolio management strategies; statistical procedures; identification of models; Monte Carlo methods; and numerical implications of stochastic volatilities. Articles have been written in a pedagogic style and made reasonably self-contained, covering both mathematical matters and practical issues in numerical problems. Thus the book has something to offer economists, probabilists and applied mathematicians working in finance.

Arvustused

Review of the hardback: ' the book can be strongly recommended to economists, probabilists, and applied mathematics working in finance.' European Mathematical Society

Muu info

Numerical Methods in Finance describes a wide variety of numerical methods used in financial analysis.
Contributors vii
Introduction ix
Convergence of Numerical Schemes for Degenerate Parabolic Equations Arising in Finance Theory
1(21)
G. Barles
Continuous-Time Monte Carlo Methods and Variance Reduction
22(21)
Nigel J. Newton
Recent Advances in Numerical Methods for Pricing Derivative Securities
43(24)
M. Broadie
J. Detemple
American Options: A Comparison of Numerical Methods
67(21)
F. AitSahlia
P. Carr
Fast, Accurate and Inelegant Valuation of American Options
88(5)
Adriaan Joubert
L.C.G. Rogers
Valuation of American Option in a Jump-diffusion Models
93(22)
Xiao Lan Zhang
Some Nonlinear Methods for Studying Far-from-the-money Contingent Claims
115(31)
E. Fournie
J.M. Lasry
P.L. Lions
Monte Carlo Methods for Stochastic Volatility Models
146(19)
E. Fournie
J.M. Lasry
N. Touzi
Dynamic Optimization for a Mixed Portfolio with Transaction Costs
165(16)
Agnes Sulem
Imperfect Markets and Backward Stochastic Differential Equations
181(34)
N. El Karoui
M.C. Quenez
Reflected Backward SDEs and American Options
215(17)
N. El Karoui
E. Pardoux
M.C. Quenez
Numerical Methods for Backward Stochastic Differential Equations
232(13)
D. Chevance
Viscosity Solutions and Numerical Schemes for Investment/Consumption Models with Transaction Costs
245(25)
Agnes Tourin
Thaleia Zariphopoulou
Does Volatility Jump or Just Diffuse? A Statistical Approach
270(20)
Renzo G. Avesani
Pierre Bertrand
Martingale-Based Hedge Error Control
290(15)
Peter Bossaerts
Bas Werker
The Use of Second-Order Stochastic Dominance To Bound European Call Prices: Theory and Results
305
Claude Henin
Nathalie Pistre