Muutke küpsiste eelistusi

Numerical Methods in Finance [Kõva köide]

Edited by (University of Bath), Edited by (Institut National de Recherche en Informatique et en Automatique (INRIA), Rocquencourt)
  • Formaat: Hardback, 340 pages, kõrgus x laius x paksus: 229x152x22 mm, kaal: 670 g, 15 Tables, unspecified; 20 Line drawings, unspecified
  • Sari: Publications of the Newton Institute
  • Ilmumisaeg: 26-Jun-1997
  • Kirjastus: Cambridge University Press
  • ISBN-10: 0521573548
  • ISBN-13: 9780521573542
Teised raamatud teemal:
  • Formaat: Hardback, 340 pages, kõrgus x laius x paksus: 229x152x22 mm, kaal: 670 g, 15 Tables, unspecified; 20 Line drawings, unspecified
  • Sari: Publications of the Newton Institute
  • Ilmumisaeg: 26-Jun-1997
  • Kirjastus: Cambridge University Press
  • ISBN-10: 0521573548
  • ISBN-13: 9780521573542
Teised raamatud teemal:
Numerical Methods in Finance has emerged as a discipline at the intersection of probability theory, finance and numerical analysis. This book, based on lectures given at the Newton Institute as part of a broader programme, describes a wide variety of numerical methods used in financial analysis: computation of option prices, especially of American option prices, by finite difference and other methods; numerical solution of portfolio management strategies; statistical procedures; identification of models; Monte Carlo methods; and numerical implications of stochastic volatilities. Articles have been written in a pedagogic style and made reasonably self-contained, covering both mathematical matters and practical issues in numerical problems. Thus the book has something to offer economists, probabilists and applied mathematicians working in finance.

Arvustused

Review of the hardback: ' the book can be strongly recommended to economists, probabilists, and applied mathematics working in finance.' European Mathematical Society

Muu info

Numerical Methods in Finance describes a wide variety of numerical methods used in financial analysis.
Contributors vii(2) Introdution ix G. Barles Convergence of Numerical Schemes for Degenerate Parabolic Equation Arising in Finance Theory 1(21) Nigel J. Newton Continous--Time Monte Carlo Methods and Variance Reduction 22(21) M. Broadie J. Detemple Recent Advances in Numerical Methods for Pricing Derivative Securities 43(24) F. AitSahlia P. Carr American Options: A Comparison of Numerical Methods 67(21) Adriaan Joubert L. C. G. Rogers Fast, Accurate and Intelegant Valuantion of American Options 22(5) Xiao Lan Zhang Valuation of American Option in a Jump-diffusion Models 93(22) E. Fournie J. M. Lasry P. L. Lions Some Nonlinear Methods for Studying Far-Form-the-money Contingent Claims 115(31) E. Fournie J. M. Lasry N. Touzi Monte Carlo Methods for Stochastic Volatility Models 146(19) Agnes Sulem Dynamic Optimization for a Mixed Portfolio with Transaction Cost 165(16) N. EI Karoui M. C. Quenez Imperfect Markets and Backward Stochastic Differential Equations 181(34) N. EI Karoui E. Pardoux M. C. Quenez Reflected Backward SDEs and American Options 215(17) D. Chevance Numerical Methods for Backward Stochastic Differential Equations 232(13) Agnes Tourin Thaleia Zariphopoulou Viscosity Solutions and Numerical Schemes for Investment/Consumption Models with Transaction Costs 245(25) Renzo G. Avesani Pierre Bertrand Does Volantility Jump or Just Diffuse? A Statistical approach 270(20) Peter Bossaerts Bas Werker Martingale--Based Hedge Error Control 290(15) Claude Henin Nathalie Pistre The Use of Second-Order Stochastic Dominance To Bound European Call Prices: Theory and Results 305