Preface |
|
vii | |
Editor |
|
ix | |
Contributors |
|
xi | |
|
PART 1 Optical and Acoustic Sensors |
|
|
|
Chapter 1 Optical Fiber Sensors |
|
|
3 | (24) |
|
|
|
|
|
|
|
3 | (1) |
|
|
4 | (7) |
|
Transmission and Reflection Schemes |
|
|
4 | (1) |
|
Macrobending or Microbending Sensors |
|
|
5 | (1) |
|
|
6 | (2) |
|
Evanescent Wave-Based Sensors |
|
|
8 | (1) |
|
Partial or Total Removal of the Cladding |
|
|
8 | (1) |
|
|
9 | (1) |
|
Side Polishing with Core Exposure |
|
|
10 | (1) |
|
Self-Reference Techniques |
|
|
11 | (1) |
|
|
11 | (3) |
|
|
11 | (1) |
|
|
12 | (1) |
|
|
12 | (1) |
|
|
12 | (1) |
|
|
13 | (1) |
|
|
13 | (1) |
|
|
14 | (5) |
|
|
17 | (2) |
|
|
19 | (2) |
|
Interrogation of FBG Sensors |
|
|
21 | (1) |
|
|
22 | (5) |
|
Chapter 2 Sensors Based on Polymer Optical Fibers: Microstructured and Solid Fibers |
|
|
27 | (18) |
|
Christian-Alexander Bunge |
|
|
|
|
27 | (3) |
|
General Requirements and Sensing Effects |
|
|
28 | (2) |
|
Sensors Based on Microstructured POFs |
|
|
30 | (3) |
|
Mechanical Sensing with Fiber Using Gratings |
|
|
30 | (1) |
|
|
31 | (1) |
|
Spectroscopy Using Evanescent-Field Interaction |
|
|
32 | (1) |
|
|
33 | (8) |
|
|
33 | (1) |
|
Attenuation due to Microbending |
|
|
33 | (1) |
|
Attenuation due to Change of Refractive Index |
|
|
34 | (1) |
|
|
35 | (1) |
|
Capture of Reflected Light |
|
|
35 | (2) |
|
Mechanical Properties Using OTDR |
|
|
37 | (1) |
|
|
38 | (2) |
|
Temperature Sensors Based on Fluorescence |
|
|
40 | (1) |
|
Sensor Multiplexing by Fiber Bundles |
|
|
41 | (1) |
|
|
42 | (1) |
|
|
43 | (3) |
|
Chapter 3 Label-Free Biosensors for Biomedical Applications: The Potential of Integrated Optical Biosensors and Silicon Photonics |
|
|
45 | (34) |
|
|
|
|
46 | (4) |
|
Desired Biosensor Characteristics |
|
|
46 | (1) |
|
Sensitivity and Selectivity |
|
|
46 | (1) |
|
|
47 | (1) |
|
|
48 | (1) |
|
General Label-Free Biosensor Setup and Operation |
|
|
49 | (1) |
|
Toward Fully Integrated Biosensors |
|
|
50 | (4) |
|
Silicon Photonics for Device Integration |
|
|
51 | (1) |
|
|
51 | (1) |
|
|
51 | (1) |
|
Waveguides: Fabrication and Basic Principles |
|
|
52 | (2) |
|
|
54 | (13) |
|
Electrochemical Biosensors |
|
|
54 | (1) |
|
Electrical Impedance Spectroscopy with Microelectrodes |
|
|
54 | (1) |
|
Nanofield Effect Transistors |
|
|
55 | (1) |
|
|
56 | (1) |
|
Microelectromechanical and Nanoelectromechanical Systems |
|
|
56 | (2) |
|
|
58 | (1) |
|
|
58 | (2) |
|
|
60 | (1) |
|
|
61 | (3) |
|
|
64 | (3) |
|
|
67 | (1) |
|
|
68 | (1) |
|
|
68 | (11) |
|
Chapter 4 Luminescent Thermometry for Sensing Rapid Thermal Profiles in Fires and Explosions |
|
|
79 | (28) |
|
|
|
|
79 | (2) |
|
|
81 | (8) |
|
Basics of Trap Luminescence |
|
|
82 | (3) |
|
TL for Temperature and Thermal History Measurement |
|
|
85 | (4) |
|
|
89 | (3) |
|
|
92 | (3) |
|
Thermal History Modeling and Reconstruction |
|
|
95 | (5) |
|
|
100 | (3) |
|
Conclusion and Future Directions |
|
|
103 | (1) |
|
|
103 | (1) |
|
|
104 | (3) |
|
Chapter 5 Solar Cell Analyses with Ultraviolet-Visible-Near-Infrared Spectroscopy and I-V Measurements |
|
|
107 | (32) |
|
|
Ultraviolet-Visible-Near-Infrared (UV-Vis-NIR) Spectroscopy |
|
|
107 | (1) |
|
Correct and Efficient Theory for Thin-Film Investigations: Single-Layer Model |
|
|
108 | (14) |
|
Surfaces, Interfaces, and Bulks of Materials: Reflections, Transmissions, and Absorptions |
|
|
108 | (2) |
|
Exact and Complex Parameter Extraction for a Single Layer |
|
|
110 | (1) |
|
Refractive Indices and Absorption Coefficients |
|
|
110 | (4) |
|
Light Velocities, Permittivities, Wavelengths, Wave Numbers, Layer Thicknesses, and Deposition Rates |
|
|
114 | (1) |
|
Band Gap Energies and Conductivities |
|
|
114 | (3) |
|
Effective Dopant Concentrations, Mobilities, and Lifetimes |
|
|
117 | (4) |
|
Approximate Parameter Extraction for a Multilayered System |
|
|
121 | (1) |
|
Quantum Mechanical Potential Barrier Models |
|
|
122 | (2) |
|
|
122 | (1) |
|
|
123 | (1) |
|
Current-Voltage (I-V) Measurements |
|
|
124 | (14) |
|
Ideal and Real I-V Characteristic |
|
|
124 | (5) |
|
|
129 | (1) |
|
Solar Spectrum and I-V Curve |
|
|
130 | (4) |
|
|
134 | (4) |
|
|
138 | (1) |
|
Chapter 6 Sensing Applications Using Photoacoustic Spectroscopy |
|
|
139 | (36) |
|
|
|
|
139 | (1) |
|
Fundamentals of Photoacoustics |
|
|
140 | (15) |
|
|
140 | (1) |
|
Photoacoustic Spectroscopy |
|
|
140 | (2) |
|
Experimental Arrangements for PA Detection |
|
|
142 | (1) |
|
|
143 | (5) |
|
|
148 | (4) |
|
|
152 | (3) |
|
|
155 | (9) |
|
|
155 | (5) |
|
|
160 | (1) |
|
|
161 | (2) |
|
|
163 | (1) |
|
|
164 | (2) |
|
|
166 | (10) |
|
Chapter 7 Design of a Low-Cost Underwater Acoustic Modem |
|
|
175 | (38) |
|
|
|
PART 2 Magnetic and Mechanical Sensors |
|
|
|
|
176 | (1) |
|
|
177 | (7) |
|
|
178 | (1) |
|
|
178 | (1) |
|
|
178 | (2) |
|
|
180 | (1) |
|
|
180 | (1) |
|
|
180 | (2) |
|
|
182 | (1) |
|
Experimental Measurements |
|
|
182 | (1) |
|
|
183 | (1) |
|
Analog Transceiver Design |
|
|
184 | (4) |
|
|
184 | (1) |
|
|
185 | (1) |
|
|
185 | (2) |
|
|
187 | (1) |
|
|
188 | (1) |
|
|
188 | (10) |
|
|
189 | (1) |
|
|
189 | (1) |
|
|
189 | (1) |
|
Direct Sequence Spread Spectrum |
|
|
189 | (1) |
|
Orthogonal Frequency Division Multiplexing |
|
|
190 | (1) |
|
|
190 | (1) |
|
|
190 | (1) |
|
|
191 | (1) |
|
Digital Signal Processors |
|
|
191 | (1) |
|
Application-Specific Processors |
|
|
191 | (1) |
|
Field Programmable Gate Arrays |
|
|
191 | (1) |
|
|
192 | (1) |
|
|
192 | (1) |
|
|
192 | (2) |
|
|
194 | (1) |
|
|
194 | (1) |
|
HW/SW Codesign Controller |
|
|
195 | (1) |
|
|
196 | (2) |
|
|
198 | (1) |
|
|
198 | (7) |
|
|
198 | (1) |
|
|
199 | (1) |
|
|
199 | (1) |
|
|
199 | (2) |
|
|
201 | (1) |
|
|
201 | (1) |
|
|
202 | (1) |
|
|
203 | (1) |
|
|
203 | (1) |
|
Integrated System Test Summary |
|
|
203 | (1) |
|
|
203 | (2) |
|
|
205 | (1) |
|
|
206 | (8) |
|
Chapter 8 Accurate Scanning of Magnetic Fields |
|
|
213 | (30) |
|
|
|
|
|
214 | (1) |
|
|
214 | (1) |
|
|
214 | (1) |
|
|
214 | (1) |
|
|
215 | (2) |
|
|
215 | (1) |
|
|
215 | (2) |
|
Coordinate Measuring Machine |
|
|
217 | (4) |
|
|
217 | (1) |
|
|
218 | (2) |
|
|
220 | (1) |
|
Measuring the Spatial Dependency of Magnetic Fields |
|
|
221 | (4) |
|
|
221 | (1) |
|
Magnetic and Coordinate Measuring Machine |
|
|
222 | (1) |
|
Parameters of Calibration |
|
|
223 | (1) |
|
Measuring the Magnetic Field with Respect to the Geometry of the Field Source |
|
|
224 | (1) |
|
|
225 | (11) |
|
|
225 | (1) |
|
|
225 | (1) |
|
|
225 | (1) |
|
Generating the Reference Field |
|
|
226 | (1) |
|
Orientation of the Conductor |
|
|
226 | (1) |
|
|
226 | (1) |
|
|
227 | (1) |
|
Accurate Angle Calibration |
|
|
228 | (1) |
|
|
228 | (1) |
|
|
228 | (1) |
|
Misalignment of the Silicon Die |
|
|
229 | (3) |
|
|
232 | (2) |
|
|
234 | (1) |
|
|
235 | (1) |
|
|
236 | (3) |
|
|
236 | (1) |
|
|
236 | (1) |
|
|
237 | (1) |
|
|
238 | (1) |
|
|
239 | (1) |
|
|
240 | (3) |
|
Chapter 9 Artificial Microsystems for Sensing Airflow, Temperature, and Humidity by Combining MEMS and CMOS Technologies |
|
|
243 | (14) |
|
|
|
|
|
|
|
243 | (1) |
|
Three-Dimensional Microbeams as Airflow Sensors |
|
|
244 | (5) |
|
Three-Dimensional Multilayered Cantilevers |
|
|
244 | (1) |
|
Fabrication of Cointegrated CMOS 3D Sensors |
|
|
245 | (1) |
|
|
246 | (1) |
|
|
247 | (1) |
|
|
248 | (1) |
|
|
249 | (1) |
|
|
249 | (1) |
|
Two-Dimensional Microelectrodes as Hydrophilic Sensors |
|
|
249 | (3) |
|
Two-Dimensional Multilayered Microsystems |
|
|
249 | (1) |
|
Fabrication of Cointegrated CMOS Humidity Sensors |
|
|
250 | (1) |
|
Electrical Characterization of Humidity Sensors |
|
|
250 | (2) |
|
Application for Respiratory Rate Detection |
|
|
252 | (1) |
|
|
252 | (1) |
|
|
253 | (1) |
|
|
253 | (5) |
|
Chapter 10 Microelectromechanical System-Based Micro Hot-Plate Devices |
|
|
257 | (24) |
|
|
|
|
|
258 | (1) |
|
Design Process for Micro Hot-Plates |
|
|
259 | (11) |
|
Thermal Energy Transfer in Micro Hot-Plates |
|
|
260 | (1) |
|
|
260 | (1) |
|
|
261 | (1) |
|
|
262 | (2) |
|
|
264 | (1) |
|
Heater and Temperature Sensor Layout |
|
|
265 | (1) |
|
|
265 | (1) |
|
Heater and Temperature Sensor Design |
|
|
266 | (1) |
|
FEM Analysis of Micro Hot-Plates |
|
|
267 | (3) |
|
|
270 | (2) |
|
Characterization of Micro Hot-Plates |
|
|
272 | (2) |
|
Static Electric Investigations |
|
|
272 | (1) |
|
|
273 | (1) |
|
Further Recommended Investigations |
|
|
274 | (1) |
|
Micro Hot-Plates for Metal-Oxide-Based Gas Sensors |
|
|
274 | (2) |
|
Micro Hot-Plates for Thermal Emitters |
|
|
276 | (2) |
|
|
278 | (1) |
|
|
278 | (4) |
|
Chapter 11 Vibration Energy Harvesting with Piezoelectric Microelectromechanical Systems |
|
|
281 | (34) |
|
|
|
Why Ambient Energy Harvesting? |
|
|
282 | (3) |
|
|
282 | (1) |
|
|
283 | (1) |
|
Ambient Mechanical Vibrations |
|
|
284 | (1) |
|
|
285 | (8) |
|
|
285 | (3) |
|
|
288 | (1) |
|
|
288 | (1) |
|
|
289 | (1) |
|
|
290 | (2) |
|
Comparison of Piezoelectric Materials |
|
|
292 | (1) |
|
|
293 | (13) |
|
|
294 | (1) |
|
Thin-Layered Piezoelectric Materials |
|
|
294 | (1) |
|
Geometry of the Modeled Device |
|
|
295 | (2) |
|
|
297 | (1) |
|
|
298 | (1) |
|
|
298 | (1) |
|
|
299 | (1) |
|
|
300 | (1) |
|
|
301 | (2) |
|
Comparison with Experimental Data |
|
|
303 | (2) |
|
Optimization of the Structure |
|
|
305 | (1) |
|
|
306 | (4) |
|
|
307 | (1) |
|
|
308 | (1) |
|
|
309 | (1) |
|
|
309 | (1) |
|
|
310 | (1) |
|
|
311 | (1) |
|
|
312 | (3) |
|
Chapter 12 Self-Powered Wireless Sensing in Ground Transport Applications |
|
|
315 | |
|
|
|
|
315 | (1) |
|
|
316 | (1) |
|
Vibration to Electrical Energy Conversion |
|
|
317 | (1) |
|
Piezoelectric Energy Harvesting |
|
|
318 | (2) |
|
Introduction to Energy Harvesters |
|
|
320 | (2) |
|
Anatomy of an Energy-Harvesting Power Supply |
|
|
322 | (1) |
|
Evaluating Customer Application and Fit for Energy Harvesting |
|
|
323 | (2) |
|
Inside the Energy-Harvesting Module |
|
|
325 | (1) |
|
Commonly Adopted Wireless Platforms |
|
|
326 | (2) |
|
Ground Transport Vibration |
|
|
328 | (1) |
|
Candidate Applications and Field Trials |
|
|
329 | (3) |
|
|
332 | (1) |
|
|
332 | |
Index |
|
335 | |