Muutke küpsiste eelistusi

Parameter Estimation in Stochastic Volatility Models 2022 ed. [Pehme köide]

  • Formaat: Paperback / softback, 613 pages, kõrgus x laius: 235x155 mm, kaal: 973 g, XXX, 613 p., 1 Paperback / softback
  • Ilmumisaeg: 07-Aug-2023
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031038630
  • ISBN-13: 9783031038631
Teised raamatud teemal:
  • Pehme köide
  • Hind: 141,35 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 166,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 613 pages, kõrgus x laius: 235x155 mm, kaal: 973 g, XXX, 613 p., 1 Paperback / softback
  • Ilmumisaeg: 07-Aug-2023
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031038630
  • ISBN-13: 9783031038631
Teised raamatud teemal:
This book develops alternative methods to estimate the unknown parameters in stochastic volatility models, offering a new approach to test model accuracy. While there is ample research to document stochastic differential equation models driven by Brownian motion based on discrete observations of the underlying diffusion process, these traditional methods often fail to estimate the unknown parameters in the unobserved volatility processes. This text studies the second order rate of weak convergence to normality to obtain refined inference results like confidence interval, as well as nontraditional continuous time stochastic volatility models driven by fractional Levy processes. By incorporating jumps and long memory into the volatility process, these new methods will help better predict option pricing and stock market crash risk. Some simulation algorithms for numerical experiments are provided.
Stochastic Volatility Models: Methods of Pricing, Hedging and
Estimation.- Sequential Monte Carlo Methods.- Parameter Estimation in the
Heston Model.- Fractional Ornstein-Uhlenbeck Processes,
Levy-Ornstein-Uhlenbeck Processes and Fractional Levy-Ornstein-Uhlenbeck
Processes.- Inference for General Semimartingales and Selfsimilar Processes.-
Estimation in Gamma-Ornstein-Uhlenbeck Stochastic Volatility
Model.- Berry-Esseen Inequalities for the Functional
Ornstein-Uhlenbeck-Inverse-Gaussian Process.- Maximum Quasi-likelihood
Estimation in Fractional Levy Stochastic Volatility Model.- Estimation in
Barndorff-Neilsen-Shephard Ornstein-Uhlenbeck Stochastic Volatility Model.-
Parameter Estimation in Student Ornstein-Uhlenbeck Model.- Berry-Esseen
Asymptotics for Pearson Diffusions.- Bayesian Maximum Likelihood Estimation
in Fractional Stochastic Volatility Models.- Berry-Esseen-Stein-Malliavin
Theory for Fractional Ornstein-Uhlenbeck Process.- Approximate Maximum
Likelihood Estimation for Sub-fractional Hybrid Stochastic Volatility Model.-
Appendix.