Muutke küpsiste eelistusi

E-raamat: Parameter Estimation in Stochastic Volatility Models

  • Formaat: EPUB+DRM
  • Ilmumisaeg: 06-Aug-2022
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783031038617
  • Formaat - EPUB+DRM
  • Hind: 160,54 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 06-Aug-2022
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783031038617

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book develops alternative methods to estimate the unknown parameters in stochastic volatility models, offering a new approach to test model accuracy. While there is ample research to document stochastic differential equation models driven by Brownian motion based on discrete observations of the underlying diffusion process, these traditional methods often fail to estimate the unknown parameters in the unobserved volatility processes. This text studies the second order rate of weak convergence to normality to obtain refined inference results like confidence interval, as well as nontraditional continuous time stochastic volatility models driven by fractional Levy processes. By incorporating jumps and long memory into the volatility process, these new methods will help better predict option pricing and stock market crash risk. Some simulation algorithms for numerical experiments are provided.
Stochastic Volatility Models: Methods of Pricing, Hedging and
Estimation.- Sequential Monte Carlo Methods.- Parameter Estimation in the
Heston Model.- Fractional Ornstein-Uhlenbeck Processes,
Levy-Ornstein-Uhlenbeck Processes and Fractional Levy-Ornstein-Uhlenbeck
Processes.- Inference for General Semimartingales and Selfsimilar Processes.-
Estimation in Gamma-Ornstein-Uhlenbeck Stochastic Volatility
Model.- Berry-Esseen Inequalities for the Functional
Ornstein-Uhlenbeck-Inverse-Gaussian Process.- Maximum Quasi-likelihood
Estimation in Fractional Levy Stochastic Volatility Model.- Estimation in
Barndorff-Neilsen-Shephard Ornstein-Uhlenbeck Stochastic Volatility Model.-
Parameter Estimation in Student Ornstein-Uhlenbeck Model.- Berry-Esseen
Asymptotics for Pearson Diffusions.- Bayesian Maximum Likelihood Estimation
in Fractional Stochastic Volatility Models.- Berry-Esseen-Stein-Malliavin
Theory for Fractional Ornstein-Uhlenbeck Process.- Approximate Maximum
Likelihood Estimation for Sub-fractional Hybrid Stochastic Volatility Model.-
Appendix.