Muutke küpsiste eelistusi

Particles and Fundamental Interactions: An Introduction to Particle Physics 1st ed. 2012 [Pehme köide]

  • Formaat: Paperback / softback, 498 pages, kõrgus x laius: 235x155 mm, kaal: 863 g, 35 Illustrations, color; 167 Illustrations, black and white; XIV, 498 p. 202 illus., 35 illus. in color., 1 Paperback / softback
  • Sari: Undergraduate Lecture Notes in Physics
  • Ilmumisaeg: 16-Nov-2011
  • Kirjastus: Springer
  • ISBN-10: 9400724632
  • ISBN-13: 9789400724631
  • Pehme köide
  • Hind: 71,86 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 84,54 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 498 pages, kõrgus x laius: 235x155 mm, kaal: 863 g, 35 Illustrations, color; 167 Illustrations, black and white; XIV, 498 p. 202 illus., 35 illus. in color., 1 Paperback / softback
  • Sari: Undergraduate Lecture Notes in Physics
  • Ilmumisaeg: 16-Nov-2011
  • Kirjastus: Springer
  • ISBN-10: 9400724632
  • ISBN-13: 9789400724631
The book provides theoretical and phenomenological insights on the structure of matter, presenting concepts and features of elementary particle physics and fundamental aspects of nuclear physics. 

Starting with the basics (nomenclature, classification, acceleration techniques, detection of elementary particles), the properties of fundamental interactions (electromagnetic, weak and strong) are introduced with a mathematical formalism suited to undergraduate students. Some experimental results (the discovery of neutral currents and of the W± and Z0 bosons; the quark structure observed using deep inelastic scattering experiments) show the necessity of an evolution of the formalism. This motivates a more detailed description of the weak and strong interactions, of the Standard Model of the microcosm with its experimental tests, and of the Higgs mechanism. The open problems in the Standard Model of the microcosm and macrocosm are presented at the end of the book. 
1 Historical Notes and Fundamental Concepts
1(10)
1.1 Introduction
1(2)
1.2 The Discovery of Particles
3(2)
1.3 The Concept of the Atom and Indivisibility
5(4)
1.4 The Standard Model of Microcosm -- Fundamental Fermions and Boson
9(2)
2 Particle Interactions with Matter and Detectors
11(34)
2.1 Introduction
11(1)
2.2 Passage of Charged Particles Through Matter
12(10)
2.2.1 Energy Loss Through Ionization and Excitation
12(1)
2.2.2 "Classical" Calculation of Energy Loss Through Ionization
13(7)
2.2.3 Bremsstrahlung
20(2)
2.3 Photon Interactions
22(3)
2.3.1 Photoelectric Effect
22(1)
2.3.2 Compton Scattering
23(2)
2.3.3 Pair Production
25(1)
2.4 Electromagnetic Showers
25(3)
2.5 Neutron Interactions
28(1)
2.6 Qualitative Meaning of a Total Cross-Section Measurement
29(1)
2.7 Techniques of Particle Detection
30(2)
2.7.1 General Characteristics
30(2)
2.8 Ionization Detectors
32(3)
2.9 Scintillation Counters
35(3)
2.10 Semiconductor Detectors
38(1)
2.11 Cherenkov Counters
39(1)
2.12 The Bubble Chamber
40(2)
2.13 Electromagnetic and Hadronic Calorimeters
42(3)
3 Particle Accelerators and Particle Detection
45(28)
3.1 Why Do We Need Accelerators?
45(4)
3.1.1 The Center-of-Mass (c.m.) System
47(1)
3.1.2 The Laboratory System
47(1)
3.1.3 Fixed Target Accelerator and Collider
48(1)
3.2 Linear and Circular Accelerators
49(3)
3.2.1 Linear Accelerators
49(1)
3.2.2 Circular Accelerators
50(2)
3.3 Colliders and Luminosity
52(2)
3.3.1 Example: the CERN Accelerator Complex
53(1)
3.4 Conversion of Energy into Mass
54(3)
3.4.1 Use of Fixed Target Accelerators
55(2)
3.4.2 Baryonic Number Conservation
57(1)
3.5 Particle Production in a Secondary Beam
57(4)
3.5.1 Time-of-Flight Spectrometer
57(4)
3.6 Bubble Chambers in Charged Particle Beams
61(12)
3.6.1 Conservation Laws
61(3)
3.6.2 The Electron "Spiral"
64(1)
3.6.3 Electron-Positron Pair
65(1)
3.6.4 An Electron-Positron "Tree"
66(1)
3.6.5 Charged Particle Decays
67(6)
4 The Paradigm of Interactions: The Electromagnetic Case
73(28)
4.1 The Interaction Between Electric Charges
74(4)
4.1.1 The EM Coupling Constant
76(2)
4.1.2 The Quantum Theory of Electromagnetism
78(1)
4.2 Some Quantum Mechanics Concepts
78(4)
4.2.1 The Schrodinger Equation
79(1)
4.2.2 Klein--Gordon Equation
80(1)
4.2.3 Dirac Equation
81(1)
4.3 Transition Probabilities in Perturbation Theory
82(3)
4.4 The Bosonic Propagator
85(1)
4.5 Cross-Sections and Lifetime: Theory and Experiment
86(4)
4.5.1 The Cross-Section
86(2)
4.5.2 Particle Decay and Lifetime
88(2)
4.6 Feynman Diagrams
90(3)
4.7 A Few Examples of Electromagnetic Processes
93(8)
4.7.1 Rutherford Scattering
93(4)
4.7.2 The e+e- → μ+μ- Process
97(1)
4.7.3 Elastic Scattering e+e- → e+e- (Bhabha Scattering)
98(1)
4.7.4 e+e- → γ γ Annihilation
99(1)
4.7.5 Some QED Checks
99(2)
5 First Discussion of the Other Fundamental Interactions
101(12)
5.1 Introduction
101(1)
5.2 The Gravitational Interaction
101(2)
5.3 The Weak Interaction
103(3)
5.4 The Strong Interaction
106(3)
5.5 Particle Classification
109(4)
5.5.1 Classification According to Stability
110(1)
5.5.2 Classification According to the Spin
110(1)
5.5.3 Classification According to the Baryon and Lepton Numbers
111(2)
6 Invariance and Conservation Principles
113(22)
6.1 Introduction
113(1)
6.2 Invariance Principle Reminder
114(4)
6.2.1 Invariance in Classical Mechanics
114(1)
6.2.2 Invariance in Quantum Mechanics
115(2)
6.2.3 Continuous Transformations: Translations and Rotations
117(1)
6.3 Spin-Statistics Connection
118(1)
6.4 Parity
119(3)
6.5 Spin-Parity of the π Meson
122(4)
6.5.1 Spin of the π Meson
122(1)
6.5.2 Parity of the π Meson
123(2)
6.5.3 Particle--Antiparticle Parity
125(1)
6.6 Charge Conjugation
126(3)
6.6.1 Charge Conjugation in Electromagnetic Processes
127(1)
6.6.2 Violation of C in the Weak Interaction
128(1)
6.7 Time Reversal
129(2)
6.8 CP and CPT
131(2)
6.9 Electric Charge and Gauge Invariance
133(2)
7 Hadron Interactions at Low Energies and the Static Quark Model
135(44)
7.1 Hadrons and Quarks
135(2)
7.1.1 The Yukawa Model
136(1)
7.2 Proton-Neutron Symmetry and the Isotopic Spin
137(2)
7.3 The Strong Interaction Cross-Section
139(3)
7.3.1 Mean Free Path
140(2)
7.4 Low Energy Hadron-Hadron Collisions
142(6)
7.4.1 Antibaryons
143(1)
7.4.2 Hadron Resonances
144(4)
7.5 Breit--Wigner Equation for Resonances
148(6)
7.5.1 The Δ++ (1232) Resonance
150(1)
7.5.2 Resonance Formation and Production
151(1)
7.5.3 Angular Distribution of Resonance Decay Products
152(2)
7.6 Production and Decay of Strange Particles
154(2)
7.7 Classification of Hadrons Made of u, d, s Quarks
156(2)
7.8 The Jp = 3/2+ Baryonic Decuplet
158(4)
7.8.1 First Indications for the Color Quantum Number
160(2)
7.9 The Jp = 1/2+ Baryonic Octet
162(1)
7.10 Pseudoscalar Mesons
163(2)
7.11 The Vector Mesons
165(2)
7.12 Strangeness and Isospin Conservation
167(1)
7.13 The Six Quarks
168(2)
7.14 Experimental Tests on the Static Quark Model
170(7)
7.14.1 Leptonic Decays of Neutral Vector Mesons
170(1)
7.14.2 Lepton Pair Production
171(1)
7.14.3 Hadron-Hadron Cross-Sections at High Energies
172(1)
7.14.4 Baryon Magnetic Moments
173(2)
7.14.5 Relations Between Masses
175(2)
7.15 Searches for Free Quarks and Limits of the Model
177(2)
8 Weak Interactions and Neutrinos
179(50)
8.1 Introduction
179(1)
8.2 The Neutrino Hypothesis and the β Decay
180(4)
8.2.1 Nuclear β Decay and the Missing Energy
180(1)
8.2.2 The Pauli Desperate Remedy
181(2)
8.2.3 How World War II Accelerated the Neutrino Discovery
183(1)
8.3 Fermi Theory of Beta Decay
184(3)
8.3.1 Neutron Decay
185(1)
8.3.2 The Fermi Coupling Constant from Neutron β Decay
186(1)
8.3.3 The Coupling Constant αw from Fermi Theory
187(1)
8.4 Universality of Weak Interactions (I)
187(3)
8.4.1 Muon Lifetime
187(2)
8.4.2 The Sargent Rule
189(1)
8.4.3 The Puppi Triangle
189(1)
8.5 The Discovery of the Neutrino
190(4)
8.5.1 The Poltergeist Project
190(4)
8.6 Different Transition Types in β Decay
194(4)
8.6.1 The Cross-Section of the β-Inverse Process
197(1)
8.7 Lepton Families
198(3)
8.8 Parity Violation in β Decays
201(3)
8.9 The Two-Component Neutrino Theory
204(1)
8.10 Charged Pion Decay
205(3)
8.11 Strange Particle Decays
208(3)
8.12 Universality of Weak Interactions (II). The Cabibbo Angle
211(2)
8.13 Weak Interaction Neutral Current
213(2)
8.14 Weak Interactions and Quark Eigenstates
215(5)
8.14.1 The WI Hamiltonian and the GIM Mechanism
215(2)
8.14.2 Hints on the Fourth Quark from WI Neutral Currents
217(1)
8.14.3 The Six Quarks and the Cabibbo--Kobayashi--Maskawa Matrix
218(2)
8.15 Discovery of the W± and Z0 Vector Bosons
220(2)
8.16 The V-A Theory of CC Weak Interaction
222(7)
8.16.1 Bilinear Forms of Dirac Fermions
222(3)
8.16.2 Current--Current Weak Interaction
225(4)
9 Discoveries in Electron-Positron Collisions
229(36)
9.1 Introduction
229(2)
9.2 Electron-Positron Cross-Section and the Determination of the Number of Colors
231(3)
9.2.1 The Process e+e- → γ → μ+μ-
232(1)
9.2.2 The Color Quantum Number
232(2)
9.3 The Discovery of Charm and Beauty Quarks
234(3)
9.3.1 Mesons with c, c Quarks
234(1)
9.3.2 The J / ψ Resonance Properties
235(1)
9.3.3 Mesons with b, b Quarks
236(1)
9.4 Spectroscopy of Heavy Mesons and αs Estimate
237(1)
9.5 The τ Lepton
238(1)
9.6 LEP Experiments and Examples of Events at LEP
239(9)
9.6.1 The LEP Detectors
239(4)
9.6.2 Events in 4π Detectors at LEP
243(5)
9.7 e+e- Collisions at Ecm ~ 91 GeV. The Z0 Boson
248(9)
9.7.1 The Z0 Resonance
248(1)
9.7.2 Z0 Total and Partial Widths
249(2)
9.7.3 Measurable Quantities, Γinvis and the Number of Light Neutrino Families
251(2)
9.7.4 Forward--Backward Asymmetries AFB
253(3)
9.7.5 Multihadronic Production Model
256(1)
9.8 e+e- Collisions for √s > 100 GeV at LEP2
257(8)
9.8.1 e+e- → W+, W-, Z0Z0 Cross-Sections
258(3)
9.8.2 The W Boson Mass and Width
261(1)
9.8.3 Measurement of αs
262(1)
9.8.4 The Higgs Boson Search at LEP
262(3)
10 High Energy Interactions and the Dynamic Quark Model
265(48)
10.1 Introduction
265(1)
10.2 Lepton--Nucleon Interactions at High Energies
265(4)
10.3 Elastic Electron-Proton Scattering
269(6)
10.3.1 Kinematic Variables
269(1)
10.3.2 Proton Form Factors
270(5)
10.4 Inelastic ep Cross-Section
275(7)
10.4.1 Partons in the Nucleons: Their Nature and Spin
278(2)
10.4.2 Electric Charge of the Partons
280(2)
10.5 Cross-Section for CC νμN Interactions
282(8)
10.5.1 Comparison with Experimental Data
287(1)
10.5.2 The Neutrino-Nucleon Cross-Section
288(2)
10.6 "Naive" and "Advanced" Quark Models
290(6)
10.6.1 Q2-Dependence of the Structure Functions
290(4)
10.6.2 Summary of DIS Results
294(2)
10.7 High Energy Hadron-Hadron Collisions
296(2)
10.8 Total and Elastic Cross-Sections at High Energy
298(4)
10.8.1 Elastic Differential Cross-Sections
298(3)
10.8.2 Total Cross-Sections
301(1)
10.9 High Energy Inelastic Hadron Collisions at Low-pt
302(3)
10.9.1 Outline on High Energy Nucleus-Nucleus Collisions
303(2)
10.10 The LHC and the Search for the Higgs Boson
305(8)
10.10.1 Higgs Boson Production in pp Collisions
306(2)
10.10.2 Higgs Boson Decays
308(1)
10.10.3 Search Strategies at LHC
309(4)
11 The Standard Model of the Microcosm
313(34)
11.1 Introduction
313(1)
11.2 Weak Interaction Divergences and Unitarity Problem
314(2)
11.3 Gauge Theories
316(6)
11.3.1 Choice of the Symmetry Group
317(1)
11.3.2 Gauge Invariance
318(4)
11.4 Gauge Invariance in the Electroweak Interaction
322(3)
11.4.1 Lagrangian Density of the Electroweak Theory
323(2)
11.5 Spontaneous Symmetry Breaking. The Higgs Mechanism
325(5)
11.6 The Weak Neutral Current
330(3)
11.7 The Fermion Masses
333(1)
11.8 Parameters of the Electroweak Interaction
334(4)
11.8.1 Electric Charge Screening in QED
336(1)
11.8.2 Higher Order Feynman Diagrams, Mathematical Infinities and Renormalization in QED
337(1)
11.9 The Strong Interaction
338(5)
11.9.1 Quantum Chromodynamics (QCD)
338(3)
11.9.2 Color Charge Screening in QCD
341(1)
11.9.3 Color Factors
342(1)
11.9.4 The Strong Coupling Constant αs
343(1)
11.10 The Standard Model: A Summary
343(4)
12 CP-Violation and Particle Oscillations
347(38)
12.1 The Matter-Antimatter Asymmetry Problem
347(1)
12.2 The K0 --- KO System
348(5)
12.2.1 Time Development of a K0 Beam. K01 Regeneration. Strangeness Oscillations
350(3)
12.3 CP-Violation in the K0 -- K0 System
353(5)
12.3.1 The Formalism and the Parameters of CP-Violation
354(4)
12.4 What is the Reason for CP-Violation?
358(2)
12.5 CP-Violation in the B0 -- B0 System
360(4)
12.5.1 Future Experiments
364(1)
12.6 Neutrino Oscillations
364(7)
12.6.1 The Special Case of Oscillations Between Two Flavors
365(2)
12.6.2 Three Flavor Oscillations
367(1)
12.6.3 The Approximation for a Neutrino with Dominant Mass
368(2)
12.6.4 Neutrino Oscillations in Matter
370(1)
12.7 Neutrinos from the Sun and Oscillation Studies
371(5)
12.8 Atmospheric νμ Oscillations and Experiments
376(5)
12.8.1 Long Baseline Experiments
379(2)
12.9 Effects of Neutrino Oscillations
381(4)
13 Microcosm and Macrocosm
385(30)
13.1 The Grand Unification
386(6)
13.1.1 Proton Decay
389(1)
13.1.2 Magnetic Monopoles
390(1)
13.1.3 Cosmology. First Moment of the Universe
391(1)
13.2 Supersymmetry (SUSY)
392(5)
13.2.1 Minimal Standard Supersymmetric Model (MSSM)
393(4)
13.2.2 Supergravity (SUGRA). Superstrings
397(1)
13.3 Composite Models
397(3)
13.4 Particles, Astrophysics and Cosmology
400(3)
13.5 Dark Matter
403(4)
13.6 The Big Bang and the Primordial Universe
407(8)
14 Fundamental Aspects of Nucleon Interactions
415(44)
14.1 Introduction
415(2)
14.2 General Properties of Nuclei
417(7)
14.2.1 The Chart of Nuclides
419(1)
14.2.2 Nuclear Binding Energy
420(1)
14.2.3 Size of the Nuclei
421(3)
14.2.4 Electromagnetic Properties of the Nuclei
424(1)
14.3 Nuclear Models
424(7)
14.3.1 Fermi Gas Model
425(1)
14.3.2 Nuclear Drop Model
426(3)
14.3.3 Shell Model
429(2)
14.4 Properties of Nucleon-Nucleon Interaction
431(2)
14.5 Radioactive Decay and Dating
433(3)
14.5.1 Cascade Decays
434(2)
14.6 γ Decay
436(1)
14.7 α Decay
437(4)
14.7.1 Elementary Theory of α Decay
439(1)
14.7.2 Lifetime Calculation of the 238 92U Nucleus
440(1)
14.8 β Decay
441(3)
14.8.1 Elementary Theory of Nuclear β-Decay
443(1)
14.9 Nuclear Reactions and Nuclear Fission
444(4)
14.9.1 Nuclear Fission
445(2)
14.9.2 Fission Nuclear Reactors
447(1)
14.10 Nuclear Fusion in Astrophysical Environments
448(7)
14.10.1 Fusion in Stars
449(2)
14.10.2 Formation of Elements Heavier than Fe in Massive Stars
451(3)
14.10.3 Earth and Solar System Dating
454(1)
14.11 Nuclear Fusion in Laboratory
455(4)
Appendix A
459(22)
A.1 Periodic Table [ P08]
460(2)
A.2 The Natural Units in Subnuclear Physics
462(1)
A.3 Basic Concepts of Relativity and Classical Electromagnetism
463(5)
A.3.1 The Formalism of Special Relativity
463(2)
A.3.2 The Formalism of Classical Electromagnetism
465(2)
A.3.3 Gauge Invariance of the Electromagnetism
467(1)
A.4 Dirac Equation and Formalism
468(11)
A.4.1 Derivation of the Dirac Equation
468(2)
A.4.2 General Properties of the Dirac Equation
470(3)
A.4.3 Properties of the Dirac Equation Solutions
473(3)
A.4.4 Helicity Operator and States
476(3)
A.5 Physical and Astrophysical Constants [ P08]
479(2)
References 481(6)
Index 487
^ 650 publications in scientific journals and over 350 reports and conference proceedings. He supervised 115 Laurea Theses, 30 PhD Theses.  He received prizes from the Italian Physical Society, the University of Bologna and from the A. Della Riccia Foundation. He is Marchigiano of the year 2006. In 1981 the Institute for Scientific Information (ISI) listed him in the 1000 Contemporary Scientists Most-Cited in 1969-78". He is presently in the Highly Cited list of ISI. He was Director of the Institute of Physics, of the Department of Physics (1975-88) and President of the Laurea in Physics Committee of the University of Bologna. He was a member of many national and international scientific committees (SPSC, LEPC and ECFA at CERN, HEP at Fermilab, of INFN, of the ENI foundation, of CTS of ENEA, bioethics of CNR, of the Galvani Committee). Presently he is Emeritus Professor at the University of Bologna, collaborator of INFN and CERN, Fellow of the American Physical Society, Socio Benemerito of the Italian Physical Society, member of the European Physical Society, of the Accademia delle Scienze di Bologna, of the New York Academy of Sciences, and the Accademia Teatina. He is one of the Editors of the Journal Astroparticle Physics.