Muutke küpsiste eelistusi

Physiological Computing Systems: International Conferences, PhyCS 2016, Lisbon, Portugal, July 2728, 2016, PhyCS 2017, Madrid, Spain, July 2728, 2017, PhyCS 2018, Seville, Spain, September 1921, 2018, Revised and Extended Selected Papers 2019 ed. [Pehme köide]

Edited by , Edited by , Edited by
  • Formaat: Paperback / softback, 239 pages, kõrgus x laius: 235x155 mm, kaal: 454 g, 112 Illustrations, color; 15 Illustrations, black and white; XX, 239 p. 127 illus., 112 illus. in color., 1 Paperback / softback
  • Sari: Lecture Notes in Computer Science 10057
  • Ilmumisaeg: 28-Aug-2019
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030279499
  • ISBN-13: 9783030279493
  • Pehme köide
  • Hind: 48,70 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 57,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 239 pages, kõrgus x laius: 235x155 mm, kaal: 454 g, 112 Illustrations, color; 15 Illustrations, black and white; XX, 239 p. 127 illus., 112 illus. in color., 1 Paperback / softback
  • Sari: Lecture Notes in Computer Science 10057
  • Ilmumisaeg: 28-Aug-2019
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030279499
  • ISBN-13: 9783030279493

This book constitutes the proceedings of the Third International Conference on Physiological Computing Systems, PhyCS 2016, held in Lisbon, Portugal, in July 2016.
The 12 papers presented in this volume were carefully reviewed and selected from numerous submissions. They contribute to the understanding of relevant trends of current research on physiological computing systems, including brain-computer interfaces, virtual reality, psychophysiological load assessment in unconstrained scenarios, body tracking and movement pattern recognition, emotion recognition, machine learning applied to diabetes and hypertension, tangible biofeedback technologies, multimodal sensor data fusion, and deep learning for hand gesture recognition.

Development and Assessment of a Self-paced BCI-VR Paradigm Using
Multimodal Stimulation and Adaptive Performance.- Bio-behavioral Modeling of
Workload and Performance.- Simple and Robust Automatic Detection and
Recognition of Human Movement Patterns in Tasks of Different Complexity.-
From Body Tracking Interaction in Floor Projection Displays to Elderly
Cardiorespiratory Training Through Exergaming.- Looking for Emotions on a
Single EEG Signal.- Detection of Artifacts Using a Non-invasive BCI on the
Basis of Electroencephalography while Utilizing Low-cost Off-the-Shelf
Equipment.- A Data-driven Model Based on Support Vector Machine to Identify
Chronic Hypertensive and Diabetic Patients.- Inner Flower: Design and
Evaluation of a Tangible Biofeedback for Relaxation.- Towards Industrial
Assistance Systems: Experiences of Applying Multi-sensor Fusion in Harsh
Environments.- Hand Gesture Recognition Based on EMG Data: A Convolutional
Neural Network Approach.- Heart Rhythm Qualitative Analysis Using Low-cost
and Open Source Electrocardiography: A Study Based on Atrial Fibrillation
Detection.- Integrating Biocybernetic Adaptation in Virtual Reality Training
Concentration and Calmness in Target Shooting.