Muutke küpsiste eelistusi

E-raamat: Physiological Computing Systems: International Conferences, PhyCS 2016, Lisbon, Portugal, July 27-28, 2016, PhyCS 2017, Madrid, Spain, July 27-28, 2017, PhyCS 2018, Seville, Spain, September 19-21, 2018, Revised and Extended Selected Papers

Edited by , Edited by , Edited by
  • Formaat - EPUB+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book constitutes the proceedings of the Third International Conference on Physiological Computing Systems, PhyCS 2016, held in Lisbon, Portugal, in July 2016.
The 12 papers presented in this volume were carefully reviewed and selected from numerous submissions. They contribute to the understanding of relevant trends of current research on physiological computing systems, including brain-computer interfaces, virtual reality, psychophysiological load assessment in unconstrained scenarios, body tracking and movement pattern recognition, emotion recognition, machine learning applied to diabetes and hypertension, tangible biofeedback technologies, multimodal sensor data fusion, and deep learning for hand gesture recognition.

Development and Assessment of a Self-paced BCI-VR Paradigm Using
Multimodal Stimulation and Adaptive Performance.- Bio-behavioral Modeling of
Workload and Performance.- Simple and Robust Automatic Detection and
Recognition of Human Movement Patterns in Tasks of Different Complexity.-
From Body Tracking Interaction in Floor Projection Displays to Elderly
Cardiorespiratory Training Through Exergaming.- Looking for Emotions on a
Single EEG Signal.- Detection of Artifacts Using a Non-invasive BCI on the
Basis of Electroencephalography while Utilizing Low-cost Off-the-Shelf
Equipment.- A Data-driven Model Based on Support Vector Machine to Identify
Chronic Hypertensive and Diabetic Patients.- Inner Flower: Design and
Evaluation of a Tangible Biofeedback for Relaxation.- Towards Industrial
Assistance Systems: Experiences of Applying Multi-sensor Fusion in Harsh
Environments.- Hand Gesture Recognition Based on EMG Data: A Convolutional
Neural Network Approach.- Heart Rhythm Qualitative Analysis Using Low-cost
and Open Source Electrocardiography: A Study Based on Atrial Fibrillation
Detection.- Integrating Biocybernetic Adaptation in Virtual Reality Training
Concentration and Calmness in Target Shooting.