Preface |
|
ix | |
|
|
1 | (10) |
|
1.1 The Third Theory of Randomness |
|
|
2 | (2) |
|
1.2 Organization of the Primer |
|
|
4 | (1) |
|
|
5 | (1) |
|
|
6 | (2) |
|
1.4.1 Three fundamental aspects |
|
|
6 | (1) |
|
1.4.2 Notational conventions |
|
|
7 | (1) |
|
1.4.3 Some instatiations of the general paradigm |
|
|
8 | (1) |
|
|
8 | (1) |
|
|
9 | (2) |
|
2 General-Purpose Pseudorandom Generators |
|
|
11 | (24) |
|
|
11 | (1) |
|
2.2 The Archetypical Application |
|
|
12 | (3) |
|
2.3 Computational Indistinguishability |
|
|
15 | (4) |
|
2.3.1 The general formulation |
|
|
15 | (1) |
|
2.3.2 Relation to statistical closeness |
|
|
16 | (1) |
|
2.3.3 Indistinguishability by Multiple samples |
|
|
16 | (3) |
|
2.4 Amplifying the Stretch Function |
|
|
19 | (2) |
|
|
21 | (4) |
|
2.5.1 Background: one-way functions |
|
|
21 | (2) |
|
2.5.2 A simple construction |
|
|
23 | (1) |
|
2.5.3 An alternative presentation |
|
|
23 | (1) |
|
2.5.4 A necessary and sufficient condition |
|
|
24 | (1) |
|
2.6 Non-uniformly Strong Pseudorandom Generators |
|
|
25 | (2) |
|
2.7 Stronger (Uniform-complexity) Notions |
|
|
27 | (2) |
|
2.7.1 Fooling stronger distinguishers |
|
|
27 | (1) |
|
2.7.2 Pseudorandom functions |
|
|
27 | (2) |
|
2.8 Conceptual Reflections |
|
|
29 | (1) |
|
|
30 | (1) |
|
|
31 | (4) |
|
3 Derandomization of Time-Complexity Classes |
|
|
35 | (12) |
|
3.1 Defining Canonical Derandomizers |
|
|
35 | (2) |
|
3.2 Constructing Canonical Derandomizers |
|
|
37 | (6) |
|
3.2.1 The construction and its consequences |
|
|
38 | (2) |
|
3.2.2 Analyzing the construction |
|
|
40 | (1) |
|
3.2.3 Construction 3.4 as a general framework |
|
|
41 | (2) |
|
3.3 Reflections Regarding Derandomization |
|
|
43 | (1) |
|
|
43 | (1) |
|
|
44 | (3) |
|
4 Space-Bounded Distinguishers |
|
|
47 | (12) |
|
|
47 | (3) |
|
|
50 | (6) |
|
4.2.1 Sketches of the proofs of Theorems 4.2 and 4.3 |
|
|
51 | (3) |
|
4.2.2 Derandomization of space-complexity classes |
|
|
54 | (2) |
|
|
56 | (1) |
|
|
56 | (3) |
|
5 Special Purpose Generators |
|
|
59 | (18) |
|
5.1 Pairwise Independence Generators |
|
|
60 | (3) |
|
|
60 | (2) |
|
5.1.2 A taste of the applications |
|
|
62 | (1) |
|
5.2 Small-Bias Generators |
|
|
63 | (3) |
|
|
64 | (1) |
|
5.2.2 A taste of the applications |
|
|
65 | (1) |
|
|
66 | (1) |
|
5.3 Random Walks on Expanders |
|
|
66 | (3) |
|
5.3.1 Background: expanders and random walks on them |
|
|
67 | (1) |
|
|
68 | (1) |
|
|
69 | (1) |
|
|
69 | (8) |
|
|
77 | (2) |
|
|
79 | (28) |
|
|
79 | (4) |
|
|
79 | (1) |
|
|
80 | (1) |
|
A.3 The Leftover Hash Lemma |
|
|
81 | (2) |
|
B On Randomness Extractors |
|
|
83 | (6) |
|
|
84 | (1) |
|
|
85 | (4) |
|
C A Generic Hard-Core Predicate |
|
|
89 | (4) |
|
D Using Randomness in computation |
|
|
93 | (6) |
|
D.1 A Simple Probabilistic Polynomial-Time Primality Test |
|
|
93 | (2) |
|
D.2 Testing Polynomial Identity |
|
|
95 | (1) |
|
D.3 The Accidental Tourist Sees It All |
|
|
96 | (3) |
|
E Cryptographic Applications of Pseudorandom functions |
|
|
99 | (4) |
|
|
99 | (2) |
|
E.2 Authenticated Communication |
|
|
101 | (2) |
|
F Some Basic Complexity Classes |
|
|
103 | (4) |
Bibliography |
|
107 | (6) |
Index |
|
113 | |