Muutke küpsiste eelistusi

E-raamat: Primer on Pseudorandom Generators

  • Formaat: 114 pages
  • Sari: University Lecture Series
  • Ilmumisaeg: 22-Mar-2011
  • Kirjastus: American Mathematical Society
  • ISBN-13: 9781470416508
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 50,39 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 114 pages
  • Sari: University Lecture Series
  • Ilmumisaeg: 22-Mar-2011
  • Kirjastus: American Mathematical Society
  • ISBN-13: 9781470416508
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

A fresh look at the question of randomness was taken in the theory of computing: A distribution is pseudorandom if it cannot be distinguished from the uniform distribution by any efficient procedure. This paradigm, originally associating efficient procedures with polynomial-time algorithms, has been applied with respect to a variety of natural classes of distinguishing procedures. The resulting theory of pseudorandomness is relevant to science at large and is closely related to central areas of computer science, such as algorithmic design, complexity theory, and cryptography.

This primer surveys the theory of pseudorandomness, starting with the general paradigm, and discussing various incarnations while emphasizing the case of general-purpose pseudorandom generators (withstanding any polynomial-time distinguisher). Additional topics include the "derandomization" of arbitrary probabilistic polynomial-time algorithms, pseudorandom generators withstanding space-bounded distinguishers, and serveral natural notions of special-purpose pseudorandom generators.

The primer assumes basic familiarity with the notion of efficient algorithms and with elementary probability theory, but provides a basic introduction to all notions that are actually used. as a result, the primer is essentially self-contained, although the interested reader is at times referred to other sources for more detail.
Preface ix
1 Introduction
1(10)
1.1 The Third Theory of Randomness
2(2)
1.2 Organization of the Primer
4(1)
1.3 Standard Conventions
5(1)
1.4 The General Paradigm
6(2)
1.4.1 Three fundamental aspects
6(1)
1.4.2 Notational conventions
7(1)
1.4.3 Some instatiations of the general paradigm
8(1)
Notes
8(1)
Exercises
9(2)
2 General-Purpose Pseudorandom Generators
11(24)
2.1 The Basic Definition
11(1)
2.2 The Archetypical Application
12(3)
2.3 Computational Indistinguishability
15(4)
2.3.1 The general formulation
15(1)
2.3.2 Relation to statistical closeness
16(1)
2.3.3 Indistinguishability by Multiple samples
16(3)
2.4 Amplifying the Stretch Function
19(2)
2.5 Constructions
21(4)
2.5.1 Background: one-way functions
21(2)
2.5.2 A simple construction
23(1)
2.5.3 An alternative presentation
23(1)
2.5.4 A necessary and sufficient condition
24(1)
2.6 Non-uniformly Strong Pseudorandom Generators
25(2)
2.7 Stronger (Uniform-complexity) Notions
27(2)
2.7.1 Fooling stronger distinguishers
27(1)
2.7.2 Pseudorandom functions
27(2)
2.8 Conceptual Reflections
29(1)
Notes
30(1)
Exercises
31(4)
3 Derandomization of Time-Complexity Classes
35(12)
3.1 Defining Canonical Derandomizers
35(2)
3.2 Constructing Canonical Derandomizers
37(6)
3.2.1 The construction and its consequences
38(2)
3.2.2 Analyzing the construction
40(1)
3.2.3 Construction 3.4 as a general framework
41(2)
3.3 Reflections Regarding Derandomization
43(1)
Notes
43(1)
Exercises
44(3)
4 Space-Bounded Distinguishers
47(12)
4.1 Definitional Issues
47(3)
4.2 Two Constructions
50(6)
4.2.1 Sketches of the proofs of Theorems 4.2 and 4.3
51(3)
4.2.2 Derandomization of space-complexity classes
54(2)
Notes
56(1)
Exercises
56(3)
5 Special Purpose Generators
59(18)
5.1 Pairwise Independence Generators
60(3)
5.1.1 Constructions
60(2)
5.1.2 A taste of the applications
62(1)
5.2 Small-Bias Generators
63(3)
5.2.1 Constructions
64(1)
5.2.2 A taste of the applications
65(1)
5.2.3 Generalization
66(1)
5.3 Random Walks on Expanders
66(3)
5.3.1 Background: expanders and random walks on them
67(1)
5.3.2 The generator
68(1)
Notes
69(1)
Exercises
69(8)
Concluding Remarks
77(2)
Appendices
79(28)
A Hashing functions
79(4)
A.1 Definitions
79(1)
A.2 Constructions
80(1)
A.3 The Leftover Hash Lemma
81(2)
B On Randomness Extractors
83(6)
B.1 Definitions
84(1)
B.2 Constructions
85(4)
C A Generic Hard-Core Predicate
89(4)
D Using Randomness in computation
93(6)
D.1 A Simple Probabilistic Polynomial-Time Primality Test
93(2)
D.2 Testing Polynomial Identity
95(1)
D.3 The Accidental Tourist Sees It All
96(3)
E Cryptographic Applications of Pseudorandom functions
99(4)
E.1 Secret Communication
99(2)
E.2 Authenticated Communication
101(2)
F Some Basic Complexity Classes
103(4)
Bibliography 107(6)
Index 113