About the Author |
|
xi | |
About the Technical Reviewer |
|
xiii | |
Acknowledgments |
|
xv | |
Introduction |
|
xvii | |
Chapter 1 Rise of the Quantum Machines: Fundamentals |
|
1 | (40) |
|
How This Book Is Organized |
|
|
2 | (1) |
|
The Essentials of Quantum Computing |
|
|
2 | (13) |
|
|
5 | (1) |
|
|
5 | (1) |
|
|
6 | (2) |
|
Observables and Operators |
|
|
8 | (1) |
|
|
8 | (1) |
|
|
9 | (2) |
|
|
11 | (3) |
|
|
14 | (1) |
|
Quantum Operators and Gates |
|
|
15 | (7) |
|
|
16 | (1) |
|
|
16 | (1) |
|
The Pauli Group of Matrices and Gates |
|
|
17 | (1) |
|
|
18 | (1) |
|
|
19 | (1) |
|
|
19 | (1) |
|
|
20 | (1) |
|
|
21 | (1) |
|
|
22 | (1) |
|
|
22 | (1) |
|
Time Evolution of a System |
|
|
23 | (1) |
|
|
23 | (1) |
|
|
24 | (1) |
|
|
25 | (1) |
|
|
25 | (4) |
|
|
28 | (1) |
|
Heisenberg's Uncertainty Principle |
|
|
29 | (1) |
|
Learning from Data: Al, ML, and Deep Learning |
|
|
30 | (2) |
|
|
32 | (1) |
|
Setting up the Software Environment |
|
|
33 | (5) |
|
|
36 | (1) |
|
Option 2: Anaconda Python |
|
|
36 | (1) |
|
Installing the Required Packages and Libraries |
|
|
37 | (1) |
|
Quantum Computing Cloud Access |
|
|
38 | (1) |
|
|
39 | (2) |
Chapter 2 Machine Learning |
|
41 | (58) |
|
|
44 | (8) |
|
|
46 | (1) |
|
|
47 | (5) |
|
|
52 | (2) |
|
|
54 | (1) |
|
|
54 | (3) |
|
Model Accuracy and Quality |
|
|
57 | (1) |
|
|
58 | (1) |
|
|
59 | (2) |
|
|
61 | (1) |
|
|
61 | (36) |
|
The Cross-Validation Method |
|
|
63 | (5) |
|
|
68 | (8) |
|
|
76 | (3) |
|
|
79 | (14) |
|
|
93 | (3) |
|
|
96 | (1) |
|
|
97 | (1) |
|
|
97 | (2) |
Chapter 3 Neural Networks |
|
99 | (42) |
|
|
100 | (39) |
|
|
104 | (4) |
|
|
108 | (1) |
|
|
109 | (1) |
|
Hands-on Lab: NN with TensorFlow Playground |
|
|
109 | (6) |
|
Neural Network Architecture |
|
|
115 | (1) |
|
Convolutional Neural Network (CNN) |
|
|
116 | (2) |
|
Feedforward Neural Network |
|
|
118 | (2) |
|
Hands-on Lab: Image Analysis Using MNIST Dataset |
|
|
120 | (8) |
|
Hands-on Lab: Deep NN Classifier with Iris Dataset |
|
|
128 | (11) |
|
|
139 | (2) |
Chapter 4 Quantum Information Science |
|
141 | (64) |
|
|
143 | (22) |
|
Quantum Circuits and Bloch Sphere |
|
|
145 | (20) |
|
Entropy: Classical vs. Quantum |
|
|
165 | (15) |
|
|
165 | (4) |
|
|
169 | (2) |
|
|
171 | (9) |
|
No-Cloning Theorem Revisited |
|
|
180 | (1) |
|
|
181 | (7) |
|
|
188 | (2) |
|
Quantum Parallelism and Function Evaluation |
|
|
190 | (8) |
|
|
193 | (3) |
|
Deutsch's Algorithm with Cirq |
|
|
196 | (2) |
|
Quantum Computing Systems |
|
|
198 | (5) |
|
|
203 | (2) |
Chapter 5 QML Algorithms I |
|
205 | (72) |
|
|
209 | (5) |
|
|
214 | (1) |
|
|
215 | (1) |
|
|
216 | (10) |
|
|
218 | (3) |
|
|
221 | (2) |
|
|
223 | (3) |
|
|
226 | (1) |
|
|
226 | (8) |
|
|
234 | (3) |
|
|
237 | (8) |
|
Quantum Programming with Rigetti Forest |
|
|
245 | (11) |
|
|
246 | (10) |
|
Measurement and Mixed States |
|
|
256 | (10) |
|
|
264 | (2) |
|
Open and Closed Quantum Systems |
|
|
266 | (9) |
|
Quantum Principal Component Analysis |
|
|
275 | (1) |
|
|
276 | (1) |
Chapter 6 QML Algorithms II |
|
277 | (40) |
|
|
279 | (4) |
|
|
283 | (7) |
|
|
288 | (2) |
|
|
290 | (23) |
|
Generalized Linear Models |
|
|
291 | (1) |
|
|
292 | (3) |
|
|
295 | (18) |
|
Quantum k-Means Clustering |
|
|
313 | (1) |
|
Quantum k-Medians Algorithm |
|
|
314 | (1) |
|
|
315 | (2) |
Chapter 7 QML Techniques |
|
317 | (86) |
|
HHL Algorithm (Matrix Inversion) |
|
|
318 | (9) |
|
|
327 | (5) |
|
|
328 | (1) |
|
QUBO from the !sing Model |
|
|
329 | (3) |
|
Variational Quantum Circuits |
|
|
332 | (36) |
|
Variational Quantum Eigensolver (VQE) |
|
|
336 | (32) |
|
Supervised Learning: Quantum Support-Vector Machines |
|
|
368 | (2) |
|
Quantum Computing with D-Wave |
|
|
370 | (19) |
|
Programming the D-Wave Quantum Annealing System |
|
|
374 | (15) |
|
|
389 | (2) |
|
Unsupervised Learning and Optimization |
|
|
391 | (12) |
|
Max-Cut with Annealing (D-Wave) |
|
|
394 | (5) |
|
Max-Cut with QAOA (pyQuil) |
|
|
399 | (3) |
|
|
402 | (1) |
Chapter 8 Deep Quantum Learning |
|
403 | (58) |
|
Optimized Learning by D-Wave |
|
|
404 | (15) |
|
Traveling Salesperson Problem (qbsolve) |
|
|
406 | (13) |
|
Quantum Deep Neural Networks |
|
|
419 | (2) |
|
Quantum Learning with Xanadu |
|
|
421 | (19) |
|
PennyLane for Neural Networks |
|
|
426 | (14) |
|
QNN with TensorFlow Quantum |
|
|
440 | (16) |
|
Quantum Convolutional Neural Networks |
|
|
456 | (2) |
|
|
458 | (3) |
Chapter 9 QML: Way Forward |
|
461 | (36) |
|
Quantum Computing for Chemistry |
|
|
463 | (3) |
|
|
465 | (1) |
|
|
466 | (12) |
|
|
471 | (7) |
|
Polynomial Time Hamiltonian Simulation |
|
|
478 | (2) |
|
|
480 | (7) |
|
|
481 | (4) |
|
|
485 | (2) |
|
Quantum Image Processing (QIMP) |
|
|
487 | (4) |
|
|
491 | (1) |
|
|
492 | (1) |
|
|
493 | (2) |
|
|
495 | (2) |
Appendix A: Mathematical Review |
|
497 | (10) |
|
|
497 | (4) |
|
|
501 | (3) |
|
Eigenvalues and Eigenvectors |
|
|
504 | (1) |
|
The Fourier Transform (also known as Discrete Fourier Transform) |
|
|
504 | (3) |
Appendix B: Buzzwords in Quantum Tech |
|
507 | (4) |
References |
|
511 | (28) |
Index |
|
539 | |