Muutke küpsiste eelistusi

E-raamat: Quantum Machine Learning: An Applied Approach: The Theory and Application of Quantum Machine Learning in Science and Industry

  • Formaat: EPUB+DRM
  • Ilmumisaeg: 29-Jul-2021
  • Kirjastus: APress
  • Keel: eng
  • ISBN-13: 9781484270981
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 67,91 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 29-Jul-2021
  • Kirjastus: APress
  • Keel: eng
  • ISBN-13: 9781484270981
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Know how to adapt quantum computing and machine learning algorithms. This book takes you on a journey into hands-on quantum machine learning (QML) through various options available in industry and research.

The first three chapters offer insights into the combination of the science of quantum mechanics and the techniques of machine learning, where concepts of classical information technology meet the power of physics. Subsequent chapters follow a systematic deep dive into various quantum machine learning algorithms, quantum optimization, applications of advanced QML algorithms (quantum k-means, quantum k-medians, quantum neural networks, etc.), qubit state preparation for specific QML algorithms, inference, polynomial Hamiltonian simulation, and more, finishing with advanced and up-to-date research areas such as quantum walks, QML via Tensor Networks, and QBoost.

Hands-on exercises from open source libraries regularly used today in industry and research are included, such as Qiskit, Rigetti's Forest, D-Wave's dOcean, Google's Cirq and brand new TensorFlow Quantum, and Xanadu's PennyLane, accompanied by guided implementation instructions. Wherever applicable, the book also shares various options of accessing quantum computing and machine learning ecosystems as may be relevant to specific algorithms.

The book offers a hands-on approach to the field of QML using updated libraries and algorithms in this emerging field. You will benefit from the concrete examples and understanding of tools and concepts for building intelligent systems boosted by the quantum computing ecosystem. This work leverages the author’s active research in the field and is accompanied by a constantly updated website for the book which provides all of the code examples.


What You will Learn

  • Understand and explore quantum computing and quantum machine learning, and their application in science and industry
  • Explore various data training models utilizing quantum machine learning algorithms and Python libraries
  • Get hands-on and familiar with applied quantum computing, including freely available cloud-based access
  • Be familiar with techniques for training and scaling quantum neural networks
  • Gain insight into the application of practical code examples without needing to acquire excessive machine learning theory or take a quantum mechanics deep dive


Who This Book Is For

Data scientists, machine learning professionals, and researchers




intermediate-Advanced user level
About the Author xi
About the Technical Reviewer xiii
Acknowledgments xv
Introduction xvii
Chapter 1 Rise of the Quantum Machines: Fundamentals 1(40)
How This Book Is Organized
2(1)
The Essentials of Quantum Computing
2(13)
The Qubit
5(1)
State of a Qubit
5(1)
The Bloch Sphere
6(2)
Observables and Operators
8(1)
The Hilbert Space
8(1)
Measurements
9(2)
Superposition
11(3)
Entanglement
14(1)
Quantum Operators and Gates
15(7)
Identity Operators
16(1)
Unitary Operators
16(1)
The Pauli Group of Matrices and Gates
17(1)
Phase Gates
18(1)
Cartesian Rotation Gates
19(1)
Hadamard Gate
19(1)
CNOT Gate
20(1)
SWAP Gate
21(1)
Density Operator
22(1)
Hamiltonian
22(1)
Time Evolution of a System
23(1)
No-Cloning Theorem
23(1)
Fidelity
24(1)
Complexity
25(1)
Grover's Algorithm
25(4)
Shor's Algorithm
28(1)
Heisenberg's Uncertainty Principle
29(1)
Learning from Data: Al, ML, and Deep Learning
30(2)
Quantum Machine Learning
32(1)
Setting up the Software Environment
33(5)
Option 1: Native Python
36(1)
Option 2: Anaconda Python
36(1)
Installing the Required Packages and Libraries
37(1)
Quantum Computing Cloud Access
38(1)
Summary
39(2)
Chapter 2 Machine Learning 41(58)
Algorithms and Models
44(8)
Bias
46(1)
Variance
47(5)
Overfilling of Data
52(2)
Underfitting of Data
54(1)
Ideal Fit of Data
54(3)
Model Accuracy and Quality
57(1)
Bayesian Learning
58(1)
Applied ML Workflow
59(2)
Validation of Models
61(1)
The Hold-Out Method
61(36)
The Cross-Validation Method
63(5)
Linear Regression
68(8)
Complexity
76(3)
Supervised Learning
79(14)
Unsupervised Learning
93(3)
k-Means Clustering
96(1)
Reinforcement Learning
97(1)
Summary
97(2)
Chapter 3 Neural Networks 99(42)
Perceptron
100(39)
Activation Functions
104(4)
Hidden Layers
108(1)
Backpropagation
109(1)
Hands-on Lab: NN with TensorFlow Playground
109(6)
Neural Network Architecture
115(1)
Convolutional Neural Network (CNN)
116(2)
Feedforward Neural Network
118(2)
Hands-on Lab: Image Analysis Using MNIST Dataset
120(8)
Hands-on Lab: Deep NN Classifier with Iris Dataset
128(11)
Summary
139(2)
Chapter 4 Quantum Information Science 141(64)
Quantum Information
143(22)
Quantum Circuits and Bloch Sphere
145(20)
Entropy: Classical vs. Quantum
165(15)
Shannon Entropy
165(4)
Von Neumann Entropy
169(2)
Evolution of States
171(9)
No-Cloning Theorem Revisited
180(1)
Quantum Teleportation
181(7)
Gate Scheduling
188(2)
Quantum Parallelism and Function Evaluation
190(8)
Deutsch's Algorithm
193(3)
Deutsch's Algorithm with Cirq
196(2)
Quantum Computing Systems
198(5)
Summary
203(2)
Chapter 5 QML Algorithms I 205(72)
Quantum Complexity
209(5)
Quantum Feature Maps
214(1)
Quantum Embedding
215(1)
Information Encoding
216(10)
Basis Encoding
218(3)
Amplitude Encoding
221(2)
Tensor Product Encoding
223(3)
Hamiltonian Encoding
226(1)
Deutsch-Jozsa Algorithm
226(8)
Deutsch-Jozsa with Cirq
234(3)
Quantum Phase Estimation
237(8)
Quantum Programming with Rigetti Forest
245(11)
Installing the QVM
246(10)
Measurement and Mixed States
256(10)
Mixed States
264(2)
Open and Closed Quantum Systems
266(9)
Quantum Principal Component Analysis
275(1)
Summary
276(1)
Chapter 6 QML Algorithms II 277(40)
Schmidt Decomposition
279(4)
Quantum Metrology
283(7)
Entanglement Measurement
288(2)
Linear Models
290(23)
Generalized Linear Models
291(1)
Swap Test
292(3)
Kernel Methods
295(18)
Quantum k-Means Clustering
313(1)
Quantum k-Medians Algorithm
314(1)
Summary
315(2)
Chapter 7 QML Techniques 317(86)
HHL Algorithm (Matrix Inversion)
318(9)
QUBO
327(5)
Ising Model
328(1)
QUBO from the !sing Model
329(3)
Variational Quantum Circuits
332(36)
Variational Quantum Eigensolver (VQE)
336(32)
Supervised Learning: Quantum Support-Vector Machines
368(2)
Quantum Computing with D-Wave
370(19)
Programming the D-Wave Quantum Annealing System
374(15)
Solving NP-Hard Problems
389(2)
Unsupervised Learning and Optimization
391(12)
Max-Cut with Annealing (D-Wave)
394(5)
Max-Cut with QAOA (pyQuil)
399(3)
Summary
402(1)
Chapter 8 Deep Quantum Learning 403(58)
Optimized Learning by D-Wave
404(15)
Traveling Salesperson Problem (qbsolve)
406(13)
Quantum Deep Neural Networks
419(2)
Quantum Learning with Xanadu
421(19)
PennyLane for Neural Networks
426(14)
QNN with TensorFlow Quantum
440(16)
Quantum Convolutional Neural Networks
456(2)
Summary
458(3)
Chapter 9 QML: Way Forward 461(36)
Quantum Computing for Chemistry
463(3)
OpenFermion
465(1)
Quantum Walks
466(12)
Coding Quantum Walk
471(7)
Polynomial Time Hamiltonian Simulation
478(2)
Ensembles and QBoost
480(7)
Ensembles
481(4)
QBoost
485(2)
Quantum Image Processing (QIMP)
487(4)
Tensor Networks
491(1)
Quantum Finance
492(1)
Quantum Communication
493(2)
Summary
495(2)
Appendix A: Mathematical Review 497(10)
Preliminaries
497(4)
Tensor Product
501(3)
Eigenvalues and Eigenvectors
504(1)
The Fourier Transform (also known as Discrete Fourier Transform)
504(3)
Appendix B: Buzzwords in Quantum Tech 507(4)
References 511(28)
Index 539
Santanu Ganguly has been working in the fields of quantum technologies, cloud computing, data networking, and security (on research, design, and delivery) for over 21 years. He works in Switzerland and the United Kingdom (UK) for various Silicon Valley vendors and ISPs. He has two postgraduate degrees (one in mathematics and another in observational astrophysics), and research experience and publications in nanoscale photonics and laser spectroscopy. He is currently leading global projects out of the UK related to quantum communication and machine learning, among other technologies.