Turbulence plays a crucial role in contexts ranging from galaxy formation to heavy atomic nuclei, from jet engines to arterial blood flow, challenging engineers, physicists, and mathematicians. Recently, turbulence of quantum fluids displaying superfluidity has emerged as an exciting area of interdisciplinary research that spans fluid dynamics, low-temperature physics, and Bose-Einstein condensation. The first book on quantum turbulence, this work describes state-of-the-art results and techniques, stressing analogies and differences with classical turbulence. The authors focus in particular on low temperature phases of liquid helium, drawing on evidence from recent experiments, theory, and numerical simulations. Written by leading figures in the field, this is a go-to reference for students and researchers at all levels.
Bringing together two previously distinct strands of physics, this text introduces the interdisciplinary field of quantum turbulence, the realm of quantum fluids and vortices in superfluid helium and atomic Bose–Einstein condensates. Covering state-of-the-art methods and results, it is an essential read for students and seasoned researchers alike.