Muutke küpsiste eelistusi

Radiative Heat Transfer in Turbulent Combustion Systems: Theory and Applications 1st ed. 2016 [Pehme köide]

  • Formaat: Paperback / softback, 151 pages, kõrgus x laius: 235x155 mm, kaal: 2642 g, 31 Illustrations, color; 22 Illustrations, black and white; XVI, 151 p. 53 illus., 31 illus. in color., 1 Paperback / softback
  • Sari: SpringerBriefs in Thermal Engineering and Applied Science
  • Ilmumisaeg: 14-Jan-2016
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319272896
  • ISBN-13: 9783319272894
  • Pehme köide
  • Hind: 62,59 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 73,64 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 151 pages, kõrgus x laius: 235x155 mm, kaal: 2642 g, 31 Illustrations, color; 22 Illustrations, black and white; XVI, 151 p. 53 illus., 31 illus. in color., 1 Paperback / softback
  • Sari: SpringerBriefs in Thermal Engineering and Applied Science
  • Ilmumisaeg: 14-Jan-2016
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319272896
  • ISBN-13: 9783319272894
This introduction reviews why combustion and radiation are important, as well as the technical challenges posed by radiation. Emphasis is on interactions among turbulence, chemistry and radiation (turbulence-chemistry-radiation interactions - TCRI) in Reynolds-averaged and large-eddy simulations. Subsequent chapters cover: chemically reacting turbulent flows; radiation properties, Reynolds transport equation (RTE) solution methods, and TCRI; radiation effects in laminar flames; TCRI in turbulent flames; and high-pressure combustion systems. This Brief presents integrated approach that includes radiation at the outset, rather than as an afterthought. It stands as the most recent developments in physical modeling, numerical algorithms, and applications collected in one monograph.

Introduction.- Chemically Reacting Turbulent Flows.- Radiation Properties, RTE Solvers, and TRI Models.- Radiation Effects in Laminar Flames.- Turbulence/Chemistry/Radiation Interactions in Atmospheric Pressure Turbulent Flames.- High-Pressure Combustion Systems.- Summary, Conclusions and Future Prospects.
1 Introduction
1(12)
1.1 Motivation
1(1)
1.2 Reynolds Averaging, Spatial Filtering, and Probability Density Function Methods
2(2)
1.3 Chemical Reactions, Reaction Mechanisms, and Turbulence-Chemistry Interaction
4(2)
1.4 Thermal Radiation, Spectral Radiation Properties, and Turbulence-Radiation Interaction
6(3)
1.5 Organization of Subsequent
Chapters
9(4)
References
9(4)
2 Chemically Reacting Turbulent Flows
13(30)
2.1 The Unaveraged/Unfiltered Governing Equations (DNS)
14(3)
2.2 Reynolds Averaging (RANS) and Spatial Filtering (LES)
17(5)
2.2.1 Reynolds Averaging (RANS)
17(3)
2.2.2 Spatial Filtering (LES)
20(2)
2.3 Turbulence and Turbulent Combustion Modeling
22(5)
2.3.1 RANS Modeling
22(4)
2.3.2 LES Modeling
26(1)
2.4 TCI in RANS and LES
27(3)
2.5 Multiphase Systems
30(13)
2.5.1 Soot
31(2)
2.5.2 Liquid Fuel Sprays
33(2)
2.5.3 Coal
35(3)
References
38(5)
3 Radiation Properties, RTE Solvers, and TRI Models
43(42)
3.1 Fundamentals of Thermal Radiation
43(5)
3.2 Radiative Properties of Combustion Systems
48(3)
3.3 Spectral Models
51(6)
3.3.1 The Optically Thin Approximation (OT)
51(1)
3.3.2 Traditional Narrow Band Models
52(1)
3.3.3 Narrow Band k-Distributions
53(3)
3.3.4 Comparison of k-Distributions and Statistical Models
56(1)
3.4 Global Models
57(9)
3.4.1 The Weighted-Sum-of-Gray-Gases Model
58(1)
3.4.2 The Spectral-Line-Based WSGG Method
59(3)
3.4.3 Full-Spectrum k-Distributions
62(2)
3.4.4 Full-Spectrum k-Distribution Assembly
64(2)
3.5 Radiative Transfer Equation Solution Methods
66(8)
3.5.1 The Discrete Ordinates Method
67(1)
3.5.2 The Spherical Harmonics Method
68(2)
3.5.3 The Photon Monte Carlo Method
70(4)
3.6 Turbulence-Radiation Interactions
74(11)
References
79(6)
4 Radiation Effects in Laminar Flames
85(14)
4.1 One-Dimensional Laminar Flames
85(7)
4.1.1 1D Laminar Premixed Flames
85(3)
4.1.2 1D Laminar Diffusion Flames
88(4)
4.2 Two-Dimensional Laminar Flames
92(7)
4.2.1 2D Laminar Premixed Flames
92(1)
4.2.2 2D Laminar Diffusion Flames
93(2)
References
95(4)
5 DNS and LES of Turbulence--Radiation Interactions in Canonical Systems
99(12)
5.1 Decoupled Analyses: Post-Processed Chemistry and Radiation
99(4)
5.2 Nonreacting Turbulent Flows with Coupled Radiation
103(3)
5.3 Turbulent Reacting Flows with Coupled Radiation
106(2)
5.4 Summary
108(3)
References
109(2)
6 Turbulence--Radiation Interactions in Atmospheric Pressure Turbulent Flames
111(26)
6.1 Introduction
111(1)
6.2 Nonluminous Nonpremixed Jet Flames
112(9)
6.2.1 Sandia D
113(3)
6.2.2 Artificial/Scaled flames
116(5)
6.3 Luminous Nonpremixed Jet Flames
121(6)
6.4 Pool Fires
127(3)
6.5 Pulverized Coal and Oxy-Fuel Combustion
130(2)
6.6 Radiation Effects on Turbulence Levels
132(5)
References
133(4)
7 Radiative Heat Transfer in High-Pressure Combustion Systems
137(12)
7.1 Combustion and Radiative Heat Transfer at Elevated Pressures
137(2)
7.2 A High-Pressure Laminar Flame
139(1)
7.3 Spray/Radiation Coupling
139(2)
7.4 Radiative Heat Transfer in Compression-Ignition Piston Engines
141(4)
7.5 Radiative Heat Transfer in High-Speed Propulsion Systems
145(4)
References
147(2)
8 Summary, Conclusions, and Future Prospects
149