Muutke küpsiste eelistusi

Reinforcement Learning Aided Performance Optimization of Feedback Control Systems 1st ed. 2021 [Pehme köide]

  • Formaat: Paperback / softback, 127 pages, kõrgus x laius: 210x148 mm, kaal: 454 g, 53 Illustrations, black and white; XIX, 127 p. 53 illus., 1 Paperback / softback
  • Ilmumisaeg: 04-Mar-2021
  • Kirjastus: Springer Vieweg
  • ISBN-10: 3658330333
  • ISBN-13: 9783658330330
  • Pehme köide
  • Hind: 67,23 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 79,09 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 127 pages, kõrgus x laius: 210x148 mm, kaal: 454 g, 53 Illustrations, black and white; XIX, 127 p. 53 illus., 1 Paperback / softback
  • Ilmumisaeg: 04-Mar-2021
  • Kirjastus: Springer Vieweg
  • ISBN-10: 3658330333
  • ISBN-13: 9783658330330
Changsheng Hua proposes two approaches, an input/output recovery approach and a performance index-based approach for robustness and performance optimization of feedback control systems. For their data-driven implementation in deterministic and stochastic systems, the author develops Q-learning and natural actor-critic (NAC) methods, respectively. Their effectiveness has been demonstrated by an experimental study on a brushless direct current motor test rig.











The author:





Changsheng Hua received the Ph.D. degree at the Institute of Automatic Control and Complex Systems (AKS), University of Duisburg-Essen, Germany, in 2020. His research interests include model-based and data-driven fault diagnosis and fault-tolerant techniques.
Introduction.- The basics of feedback control systems.- Reinforcement
learning and feedback control.- Q-learning aided performance optimization of
deterministic systems.- NAC aided performance optimization of stochastic
systems.- Conclusion and future work.
Changsheng Hua received the Ph.D. degree at the Institute of Automatic Control and Complex Systems (AKS), University of Duisburg-Essen, Germany, in 2020. His research interests include model-based and data-driven fault diagnosis and fault-tolerant techniques.