Muutke küpsiste eelistusi

Relativistic Electron Mirrors: from High Intensity LaserNanofoil Interactions 2015 ed. [Kõva köide]

  • Formaat: Hardback, 117 pages, kõrgus x laius: 235x155 mm, kaal: 3259 g, 59 Illustrations, color; 3 Illustrations, black and white; XIII, 117 p. 62 illus., 59 illus. in color., 1 Hardback
  • Sari: Springer Theses
  • Ilmumisaeg: 13-Aug-2014
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319077511
  • ISBN-13: 9783319077512
  • Kõva köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 117 pages, kõrgus x laius: 235x155 mm, kaal: 3259 g, 59 Illustrations, color; 3 Illustrations, black and white; XIII, 117 p. 62 illus., 59 illus. in color., 1 Hardback
  • Sari: Springer Theses
  • Ilmumisaeg: 13-Aug-2014
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319077511
  • ISBN-13: 9783319077512
A dense sheet of electrons accelerated to close to the speed of light can act as a tuneable mirror that can generate bright bursts of laser-like radiation in the short wavelength range simply via the reflection of a counter-propagating laser pulse. This thesis investigates the generation of such a relativistic electron mirror structure in a series of experiments accompanied by computer simulations. It is shown that such relativistic mirror can indeed be created from the interaction of a high-intensity laser pulse with a nanometer-scale, ultrathin foil. The reported work gives a intriguing insight into the complex dynamics of high-intensity laser-nanofoil interactions and constitutes a major step towards the development of a relativistic mirror, which could potentially generate bright burst of X-rays on a micro-scale.
1 Introduction
1(6)
1.1 Thesis Outline
3(4)
References
4(3)
2 Theoretical Background
7(26)
2.1 Fundamentals of Light
7(1)
2.2 Single Electron Motion in a Relativistic Laser Field
8(8)
2.2.1 Symmetries and Invariants
9(2)
2.2.2 Single Electron Motion in a Finite Pulse
11(1)
2.2.3 The Lawson Woodward Principle and Its Limitations
12(1)
2.2.4 Acceleration in an Asymmetric Pulse
13(1)
2.2.5 Ponderomotive Scattering
14(2)
2.2.6 Vacuum Acceleration Schemes
16(1)
2.3 Laser Propagation in a Plasma
16(6)
2.3.1 Laser Interaction with an Overdense Plasma
17(3)
2.3.2 Relativistic Electron Mirrors from Nanometer Foils
20(2)
2.4 Relativistic Doppler Effect
22(1)
2.5 Coherent Thomson Scattering
23(5)
2.5.1 Analytical Model
24(3)
2.5.2 Reflection Coefficients
27(1)
2.6 Frequency Upshift from Laser-Driven Relativistic Electron Mirrors
28(5)
References
29(4)
3 Experimental Methods: Lasers, Targets and Detectors
33(20)
3.1 High Power Laser Systems
33(7)
3.1.1 Laser Pulse Contrast
34(2)
3.1.2 Utilized Laser Systems
36(4)
3.2 Diamond-Like Carbon Foils
40(3)
3.3 Diagnostics
43(10)
3.3.1 Working Principle
43(1)
3.3.2 Electron Spectrometer
44(2)
3.3.3 Multi-spectrometer
46(3)
3.3.4 Image Plates
49(1)
3.3.5 Scintillators
50(1)
References
50(3)
4 Electron Acceleration from Laser-Nanofoil Interactions
53(26)
4.1 PIC Simulation
53(5)
4.2 Experimental Setup
58(1)
4.3 Ion Measurements
59(1)
4.4 Target Thickness Scan
60(6)
4.4.1 Experimental Observations
61(1)
4.4.2 Theoretical Discussion
62(4)
4.5 Electron Blowout
66(13)
4.5.1 LANL
66(2)
4.5.2 MBI
68(2)
4.5.3 Theoretical Discussion
70(3)
4.5.4 Competing Mechanisms
73(2)
References
75(4)
5 Coherent Thomson Backscattering from Relativistic Electron Mirrors
79(20)
5.1 Experimental Setup
79(2)
5.1.1 Spatio-Temporal Overlap
81(1)
5.2 Experimental Results
81(4)
5.3 PIC Simulation
85(14)
5.3.1 Spectral Analysis
87(1)
5.3.2 Temporal Analysis: Reflection from a Relativistic Electron Mirror
88(3)
5.3.3 Electron Mirror Properties
91(1)
5.3.4 Electron Mirror Reflectivity
92(4)
5.3.5 Photon Number Estimate
96(1)
References
97(2)
6 Conclusions and Outlook
99(6)
6.1 Summary of the Results
99(2)
6.2 Future Perspectives
101(4)
6.2.1 Relativistic Electron Bunches from Laser-Nanofoil Interactions
101(1)
6.2.2 Relativistic Electron Mirrors: Towards Coherent, Bright X-rays
102(1)
References
103(2)
Appendix A Plasma Mirrors 105(8)
Appendix B Spectrometers 113