Muutke küpsiste eelistusi

Relativistic Electron Mirrors: from High Intensity LaserNanofoil Interactions Softcover reprint of the original 1st ed. 2015 [Pehme köide]

  • Formaat: Paperback / softback, 117 pages, kõrgus x laius: 235x155 mm, kaal: 2117 g, 59 Illustrations, color; 3 Illustrations, black and white; XIII, 117 p. 62 illus., 59 illus. in color., 1 Paperback / softback
  • Sari: Springer Theses
  • Ilmumisaeg: 13-Sep-2016
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319383914
  • ISBN-13: 9783319383910
  • Pehme köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 117 pages, kõrgus x laius: 235x155 mm, kaal: 2117 g, 59 Illustrations, color; 3 Illustrations, black and white; XIII, 117 p. 62 illus., 59 illus. in color., 1 Paperback / softback
  • Sari: Springer Theses
  • Ilmumisaeg: 13-Sep-2016
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319383914
  • ISBN-13: 9783319383910
A dense sheet of electrons accelerated to close to the speed of light can act as a tuneable mirror that can generate bright bursts of laser-like radiation in the short wavelength range simply via the reflection of a counter-propagating laser pulse. This thesis investigates the generation of such a relativistic electron mirror structure in a series of experiments accompanied by computer simulations. It is shown that such relativistic mirror can indeed be created from the interaction of a high-intensity laser pulse with a nanometer-scale, ultrathin foil. The reported work gives a intriguing insight into the complex dynamics of high-intensity laser-nanofoil interactions and constitutes a major step towards the development of a relativistic mirror, which could potentially generate bright burst of X-rays on a micro-scale.
Theoretical Background.- Experimental Methods: Lasers, Targets and Detectors.- Electron Acceleration from Laser-Nanofoil Interactions.- Coherent Thomson Backscattering from Relativistic Electron Mirrors.