Muutke küpsiste eelistusi

RF and Microwave Transmitter Design [Kõva köide]

(Infineon Technologies AG, Germany (M/A-COM Eurotec Operations, Ireland))
Teised raamatud teemal:
Teised raamatud teemal:
RF and Microwave Transmitter Design is unique in its coverage of both historical transmitter design and cutting edge technologies. This text explores the results of well-known and new theoretical analyses, while informing readers of modern radio transmitters' pracitcal designs and their components. Jam-packed with information, this book broadcasts and streamlines the author's considerable experience in RF and microwave design and development.
Preface xiii
Introduction 1(8)
References
6(3)
1 Passive Elements and Circuit Theory
9(48)
1.1 Immittance Two-Port Network Parameters
9(4)
1.2 Scattering Parameters
13(4)
1.3 Interconnections of Two-Port Networks
17(3)
1.4 Practical Two-Port Networks
20(4)
1.4.1 Single-Element Networks
20(1)
1.4.2 π- and T-Type Networks
21(3)
1.5 Three-Port Network with Common Terminal
24(2)
1.6 Lumped Elements
26(5)
1.6.1 Inductors
26(3)
1.6.2 Capacitors
29(2)
1.7 Transmission Line
31(4)
1.8 Types of Transmission Lines
35(9)
1.8.1 Coaxial Line
35(1)
1.8.2 Stripline
36(3)
1.8.3 Microstrip Line
39(2)
1.8.4 Slotline
41(1)
1.8.5 Coplanar Waveguide
42(2)
1.9 Noise
44(9)
1.9.1 Noise Sources
44(2)
1.9.2 Noise Figure
46(7)
1.9.3 Flicker Noise
53(1)
References
53(4)
2 Active Devices and Modeling
57(56)
2.1 Diodes
57(6)
2.1.1 Operation Principle
57(2)
2.1.2 Schottky Diodes
59(2)
2.1.3 p-i-n Diodes
61(1)
2.1.4 Zener Diodes
62(1)
2.2 Varactors
63(7)
2.2.1 Varactor Modeling
63(2)
2.2.2 MOS Varactor
65(5)
2.3 MOSFETs
70(13)
2.3.1 Small-Signal Equivalent Circuit
70(3)
2.3.2 Nonlinear I--V Models
73(2)
2.3.3 Nonlinear C--V Models
75(3)
2.3.4 Charge Conservation
78(1)
2.3.5 Gate--Source Resistance
79(1)
2.3.6 Temperature Dependence
79(2)
2.3.7 Noise Model
81(2)
2.4 MESFETs and HEMTs
83(14)
2.4.1 Small-Signal Equivalent Circuit
83(2)
2.4.2 Determination of Equivalent Circuit Elements
85(3)
2.4.3 Curtice Quadratic Nonlinear Model
88(1)
2.4.4 Parker--Skellern Nonlinear Model
89(2)
2.4.5 Chalmers (Angelov) Nonlinear Model
91(2)
2.4.6 IAF (Berroth) Nonlinear Model
93(1)
2.4.7 Noise Model
94(3)
2.5 BJTs and HBTs
97(10)
2.5.1 Small-Signal Equivalent Circuit
97(1)
2.5.2 Determination of Equivalent Circuit Elements
98(2)
2.5.3 Equivalence of Intrinsic π- and T-Type Topologies
100(2)
2.5.4 Nonlinear Bipolar Device Modeling
102(3)
2.5.5 Noise Model
105(2)
References
107(6)
3 Impedance Matching
113(42)
3.1 Main Principles
113(3)
3.2 Smith Chart
116(4)
3.3 Matching with Lumped Elements
120(18)
3.3.1 Analytic Design Technique
120(11)
3.3.2 Bipolar UHF Power Amplifier
131(4)
3.3.3 MOSFET VHF High-Power Amplifier
135(3)
3.4 Matching with Transmission Lines
138(13)
3.4.1 Analytic Design Technique
138(6)
3.4.2 Equivalence Between Circuits with Lumped and Distributed Parameters
144(3)
3.4.3 Narrowband Microwave Power Amplifier
147(2)
3.4.4 Broadband UHF High-Power Amplifier
149(2)
3.5 Matching Networks with Mixed Lumped and Distributed Elements
151(2)
References
153(2)
4 Power Transformers, Combiners, and Couplers
155(46)
4.1 Basic Properties
155(3)
4.1.1 Three-Port Networks
155(1)
4.1.2 Four-Port Networks
156(2)
4.2 Transmission-Line Transformers and Combiners
158(10)
4.3 Baluns
168(6)
4.4 Wilkinson Power Dividers/Combiners
174(8)
4.5 Microwave Hybrids
182(10)
4.6 Coupled-Line Directional Couplers
192(5)
References
197(4)
5 Filters
201(54)
5.1 Types of Filters
201(4)
5.2 Filter Design Using Image Parameter Method
205(5)
5.2.1 Constant-k Filter Sections
205(2)
5.2.2 m-Derived Filter Sections
207(3)
5.3 Filter Design Using Insertion Loss Method
210(12)
5.3.1 Maximally Flat Low-Pass Filter
210(3)
5.3.2 Equal-Ripple Low-Pass Filter
213(3)
5.3.3 Elliptic Function Low-Pass Filter
216(3)
5.3.4 Maximally Flat Group-Delay Low-Pass Filter
219(3)
5.4 Bandpass and Bandstop Transformation
222(3)
5.5 Transmission-Line Low-Pass Filter Implementation
225(3)
5.5.1 Richards's Transformation
225(1)
5.5.2 Kuroda Identities
226(2)
5.5.3 Design Example
228(1)
5.6 Coupled-Line Filters
228(15)
5.6.1 Impedance and Admittance Inverters
228(3)
5.6.2 Coupled-Line Section
231(3)
5.6.3 Parallel-Coupled Bandpass Filters Using Half-Wavelength Resonators
234(2)
5.6.4 Interdigital, Combline, and Hairpin Bandpass Filters
236(3)
5.6.5 Microstrip Filters with Unequal Phase Velocities
239(2)
5.6.6 Bandpass and Bandstop Filters Using Quarter-Wavelength Resonators
241(2)
5.7 SAW and BAW Filters
243(7)
References
250(5)
6 Modulation and Modulators
255(56)
6.1 Amplitude Modulation
255(7)
6.1.1 Basic Principle
255(4)
6.1.2 Amplitude Modulators
259(3)
6.2 Single-Sideband Modulation
262(5)
6.2.1 Double-Sideband Modulation
262(3)
6.2.2 Single-Sideband Generation
265(1)
6.2.3 Single-Sideband Modulator
266(1)
6.3 Frequency Modulation
267(11)
6.3.1 Basic Principle
268(5)
6.3.2 Frequency Modulators
273(5)
6.4 Phase Modulation
278(5)
6.5 Digital Modulation
283(19)
6.5.1 Amplitude Shift Keying
284(3)
6.5.2 Frequency Shift Keying
287(2)
6.5.3 Phase Shift Keying
289(7)
6.5.4 Minimum Shift Keying
296(3)
6.5.5 Quadrature Amplitude Modulation
299(1)
6.5.6 Pulse Code Modulation
300(2)
6.6 Class-S Modulator
302(2)
6.7 Multiple Access Techniques
304(4)
6.7.1 Time and Frequency Division Multiplexing
304(1)
6.7.2 Frequency Division Multiple Access
305(1)
6.7.3 Time Division Multiple Access
305(1)
6.7.4 Code Division Multiple Access
306(2)
References
308(3)
7 Mixers and Multipliers
311(36)
7.1 Basic Theory
311(2)
7.2 Single-Diode Mixers
313(5)
7.3 Balanced Diode Mixers
318(8)
7.3.1 Single-Balanced Mixers
318(3)
7.3.2 Double-Balanced Mixers
321(5)
7.4 Transistor Mixers
326(3)
7.5 Dual-Gate FET Mixer
329(2)
7.6 Balanced Transistor Mixers
331(7)
7.6.1 Single-Balanced Mixers
331(3)
7.6.2 Double-Balanced Mixers
334(4)
7.7 Frequency Multipliers
338(6)
References
344(3)
8 Oscillators
347(86)
8.1 Oscillator Operation Principles
347(6)
8.1.1 Steady-State Operation Mode
347(2)
8.1.2 Start-Up Conditions
349(4)
8.2 Oscillator Configurations and Historical Aspect
353(5)
8.3 Self-Bias Condition
358(4)
8.4 Parallel Feedback Oscillator
362(3)
8.5 Series Feedback Oscillator
365(3)
8.6 Push--Push Oscillators
368(4)
8.7 Stability of Self-Oscillations
372(4)
8.8 Optimum Design Techniques
376(9)
8.8.1 Empirical Approach
376(3)
8.8.2 Analytic Approach
379(6)
8.9 Noise in Oscillators
385(22)
8.9.1 Parallel Feedback Oscillator
386(6)
8.9.2 Negative Resistance Oscillator
392(2)
8.9.3 Colpitts Oscillator
394(3)
8.9.4 Impulse Response Model
397(10)
8.10 Voltage-Controlled Oscillators
407(10)
8.11 Crystal Oscillators
417(6)
8.12 Dielectric Resonator Oscillators
423(5)
References
428(5)
9 Phase-Locked Loops
433(44)
9.1 Basic Loop Structure
433(2)
9.2 Analog Phase-Locked Loops
435(4)
9.3 Charge-Pump Phase-Locked Loops
439(2)
9.4 Digital Phase-Locked Loops
441(3)
9.5 Loop Components
444(17)
9.5.1 Phase Detector
444(5)
9.5.2 Loop Filter
449(5)
9.5.3 Frequency Divider
454(3)
9.5.4 Voltage-Controlled Oscillator
457(4)
9.6 Loop Parameters
461(5)
9.6.1 Lock Range
461(1)
9.6.2 Stability
462(1)
9.6.3 Transient Response
463(2)
9.6.4 Noise
465(1)
9.7 Phase Modulation Using Phase-Locked Loops
466(3)
9.8 Frequency Synthesizers
469(5)
9.8.1 Direct Analog Synthesizers
469(1)
9.8.2 Integer-N Synthesizers Using PLL
469(2)
9.8.3 Fractional-N Synthesizers Using PLL
471(2)
9.8.4 Direct Digital Synthesizers
473(1)
References
474(3)
10 Power Amplifier Design Fundamentals
477(80)
10.1 Power Gain and Stability
477(10)
10.2 Basic Classes of Operation: A, AB, B, and C
487(9)
10.3 Linearity
496(7)
10.4 Nonlinear Effect of Collector Capacitance
503(3)
10.5 DC Biasing
506(9)
10.6 Push-Pull Power Amplifiers
515(7)
10.7 Broadband Power Amplifiers
522(15)
10.8 Distributed Power Amplifiers
537(6)
10.9 Harmonic Tuning Using Load-Pull Techniques
543(6)
10.10 Thermal Characteristics
549(3)
References
552(5)
11 High-Efficiency Power Amplifiers
557(100)
11.1 Class D
557(10)
11.1.1 Voltage-Switching Configurations
557(4)
11.1.2 Current-Switching Configurations
561(3)
11.1.3 Drive and Transition Time
564(3)
11.2 Class F
567(14)
11.2.1 Idealized Class F Mode
569(3)
11.2.2 Class F with Quarterwave Transmission Line
572(3)
11.2.3 Effect of Saturation Resistance
575(2)
11.2.4 Load Networks with Lumped and Distributed Parameters
577(4)
11.3 Inverse Class F
581(8)
11.3.1 Idealized Inverse Class F Mode
583(2)
11.3.2 Inverse Class F with Quarterwave Transmission Line
585(1)
11.3.3 Load Networks with Lumped and Distributed Parameters
586(3)
11.4 Class E with Shunt Capacitance
589(12)
11.4.1 Optimum Load Network Parameters
590(5)
11.4.2 Saturation Resistance and Switching Time
595(4)
11.4.3 Load Network with Transmission Lines
599(2)
11.5 Class E with Finite de-Feed Inductance
601(14)
11.5.1 General Analysis and Optimum Circuit Parameters
601(4)
11.5.2 Parallel-Circuit Class E
605(5)
11.5.3 Broadband Class E
610(3)
11.5.4 Power Gain
613(2)
11.6 Class E with Quarterwave Transmission Line
615(13)
11.6.1 General Analysis and Optimum Circuit Parameters
615(7)
11.6.2 Load Network with Zero Series Reactance
622(3)
11.6.3 Matching Circuits with Lumped and Distributed Parameters
625(3)
11.7 Class FE
628(10)
11.8 CAD Design Example: 1.75 GHz HBT Class E MMIC Power Amplifier
638(15)
References
653(4)
12 Linearization and Efficiency Enhancement Techniques
657(60)
12.1 Feedforward Amplifier Architecture
657(6)
12.2 Cross Cancellation Technique
663(2)
12.3 Reflect Forward Linearization Amplifier
665(1)
12.4 Predistortion Linearization
666(6)
12.5 Feedback Linearization
672(6)
12.6 Doherty Power Amplifier Architectures
678(7)
12.7 Outphasing Power Amplifiers
685(6)
12.8 Envelope Tracking
691(4)
12.9 Switched Multipath Power Amplifiers
695(7)
12.10 Kahn EER Technique and Digital Power Amplification
702(7)
12.10.1 Envelope Elimination and Restoration
702(2)
12.10.2 Pulse-Width Carrier Modulation
704(2)
12.10.3 Class S Amplifier
706(1)
12.10.4 Digital RF Amplification
706(3)
References
709(8)
13 Control Circuits
717(42)
13.1 Power Detector and VSWR Protection
717(5)
13.2 Switches
722(6)
13.3 Phase Shifters
728(13)
13.3.1 Diode Phase Shifters
729(7)
13.3.2 Schiffman 90° Phase Shifter
736(3)
13.3.3 MESFET Phase Shifters
739(2)
13.4 Attenuators
741(5)
13.5 Variable Gain Amplifiers
746(4)
13.6 Limiters
750(3)
References
753(6)
14 Transmitter Architectures
759(50)
14.1 Amplitude-Modulated Transmitters
759(7)
14.1.1 Collector Modulation
760(2)
14.1.2 Base Modulation
762(2)
14.1.3 Low-Level Modulation
764(1)
14.1.4 Amplitude Keying
765(1)
14.2 Single-Sideband Transmitters
766(2)
14.3 Frequency-Modulated Transmitters
768(4)
14.4 Television Transmitters
772(4)
14.5 Wireless Communication Transmitters
776(6)
14.6 Radar Transmitters
782(12)
14.6.1 Phased-Array Radars
783(3)
14.6.2 Automotive Radars
786(5)
14.6.3 Electronic Warfare
791(3)
14.7 Satellite Transmitters
794(3)
14.8 Ultra-Wideband Communication Transmitters
797(5)
References
802(7)
Index 809
Andrei Grebennikov is a Member of the Technical Staff at Bell Laboratories, Alcatel-Lucent, in Ireland. His responsibilities include the design and development of advanced highly efficient and linear transmitter architectures for base station cellular applications. He has taught at the University of Linz in Austria, the Institute of Microelectronics in Singapore, and the Moscow Technical University of Communications and Informatics. He has written over eighty scientific papers, has written four books, and is a Senior Member of IEEE.