Muutke küpsiste eelistusi

Road Vehicle Dynamics: Fundamentals and Modeling with MATLAB® 2nd edition [Kõva köide]

(University of Applied Sciences, Regensburg, Germany),
  • Formaat: Hardback, 376 pages, kõrgus x laius: 234x156 mm, kaal: 689 g, 23 Tables, black and white; 208 Line drawings, black and white; 2 Halftones, black and white; 210 Illustrations, black and white
  • Sari: Ground Vehicle Engineering
  • Ilmumisaeg: 18-May-2020
  • Kirjastus: CRC Press
  • ISBN-10: 0367199734
  • ISBN-13: 9780367199739
  • Formaat: Hardback, 376 pages, kõrgus x laius: 234x156 mm, kaal: 689 g, 23 Tables, black and white; 208 Line drawings, black and white; 2 Halftones, black and white; 210 Illustrations, black and white
  • Sari: Ground Vehicle Engineering
  • Ilmumisaeg: 18-May-2020
  • Kirjastus: CRC Press
  • ISBN-10: 0367199734
  • ISBN-13: 9780367199739

Road Vehicle Dynamics: Fundamentals and Modeling with MATLAB®, Second Edition combines coverage of vehicle dynamics concepts with MATLAB v9.4 programming routines and results, along with examples and numerous chapter exercises. Improved and updated, the revised text offers new coverage of active safety systems, rear wheel steering, race car suspension systems, airsprings, four-wheel drive, mechatronics, and other topics. Based on the lead author's extensive lectures, classes, and research activities, this unique text provides readers with insights into the computer-based modeling of automobiles and other ground vehicles. Instructor resources, including problem solutions, are available from the publisher.

Series Preface xiii
Preface xv
About the Authors xix
Primary Meaning of Symbols xxi
1 Introduction
1(26)
1.1 Units and Quantities
2(1)
1.1.1 SI System
2(1)
1.1.2 Tire Codes
3(1)
1.2 Terminology
3(3)
1.2.1 Vehicle Dynamics
3(1)
1.2.2 Driver
4(1)
1.2.3 Vehicle
4(1)
1.2.4 Load
5(1)
1.2.5 Environment
5(1)
1.3 Definitions
6(5)
1.3.1 Coordinate Systems
6(1)
1.3.2 Design Position of Wheel Center
7(1)
1.3.3 Toe-in, Toe-Out
8(1)
1.3.4 Wheel Camber
8(1)
1.3.5 Design Position of the Wheel Rotation Axis
9(1)
1.3.6 Wheel Aligning Point
10(1)
1.4 Active Safety Systems
11(1)
1.5 Multibody Dynamics Tailored to Ground Vehicles
12(6)
1.5.1 Modeling Aspects
12(2)
1.5.2 Kinematics
14(2)
1.5.3 Equations of Motion
16(2)
1.6 A Quarter Car Model
18(8)
1.6.1 Modeling Details
18(1)
1.6.2 Kinematics
19(3)
1.6.3 Applied Forces and Torques
22(1)
1.6.4 Equations of Motion
22(1)
1.6.5 Simulation
23(3)
Exercises
26(1)
2 Road
27(16)
2.1 Modeling Aspects
27(2)
2.2 Deterministic Profiles
29(2)
2.2.1 Bumps and Potholes
29(1)
2.2.2 Sine Waves
30(1)
2.3 Random Profiles
31(11)
2.3.1 Statistical Properties
31(2)
2.3.2 Classification of Random Road Profiles
33(1)
2.3.3 Sinusoidal Approximation
34(2)
2.3.4 Example
36(4)
2.3.5 Shaping Filter
40(1)
2.3.6 Two-Dimensional Model
41(1)
Exercises
42(1)
3 Tire
43(54)
3.1 Introduction
44(7)
3.1.1 Tire Development
44(1)
3.1.2 Tire Composites
44(1)
3.1.3 Tire Forces and Torques
45(1)
3.1.4 Measuring Tire Forces and Torques
46(2)
3.1.5 Modeling Aspects
48(2)
3.1.6 Typical Tire Characteristics
50(1)
3.2 Contact Geometry
51(10)
3.2.1 Geometric Contact Point
51(5)
3.2.2 Static Contact Point and Tire Deflection
56(1)
3.2.3 Length of Contact Patch
57(1)
3.2.4 Contact Point Velocity
58(1)
3.2.5 Dynamic Rolling Radius
59(2)
3.3 Steady-State Forces and Torques
61(10)
3.3.1 Wheel Load
61(3)
3.3.2 Tipping Torque
64(1)
3.3.3 Rolling Resistance
64(1)
3.3.4 Longitudinal Force and Longitudinal Slip
65(3)
3.3.5 Lateral Slip, Lateral Force, and Self-Aligning Torque
68(3)
3.4 Combined Forces
71(8)
3.4.1 Combined Slip and Combined Force Characteristic
71(2)
3.4.2 Suitable Approximation and Results
73(6)
3.5 Bore Torque
79(2)
3.6 Generalized or Three-Dimensional Slip
81(1)
3.7 Different Influences on Tire Forces and Torques
82(7)
3.7.1 Wheel Load
82(3)
3.7.2 Friction
85(1)
3.7.3 Camber
86(3)
3.8 First-Order Tire Dynamics
89(6)
3.8.1 Simple Dynamic Extension
89(1)
3.8.2 Enhanced Dynamics
90(4)
3.8.3 Parking Torque
94(1)
Exercises
95(2)
4 Drive Train
97(26)
4.1 Components and Concepts
97(3)
4.1.1 Conventional Drive Train
97(1)
4.1.2 Hybrid Drive
98(1)
4.1.3 Electric Drive
99(1)
4.2 Eigendynamics of Wheel and Tire
100(5)
4.2.1 Equation of Motion
100(1)
4.2.2 Steady-State Tire Forces
101(1)
4.2.3 Dynamic Tire Forces
102(3)
4.3 Simple Vehicle Wheel Tire Model
105(6)
4.3.1 Equations of Motion
105(1)
4.3.2 Driving Torque
106(1)
4.3.3 Braking Torque
106(2)
4.3.4 Simulation Results
108(3)
4.4 Differentials
111(4)
4.4.1 Classic Design
111(3)
4.4.2 Active Differentials
114(1)
4.5 Generic Drive Train
115(1)
4.6 Transmission
116(2)
4.7 Clutch
118(1)
4.8 Power Sources
119(2)
4.8.1 Combustion Engine
119(1)
4.8.2 Electric Drive
120(1)
4.8.3 Hybrid Drive
120(1)
Exercises
121(2)
5 Suspension System
123(46)
5.1 Purpose and Components
124(1)
5.2 Some Examples
124(4)
5.2.1 Multipurpose Systems
124(1)
5.2.2 Specific Systems
125(1)
5.2.3 Steering Geometry
126(2)
5.3 Steering Systems
128(12)
5.3.1 Components and Requirements
128(1)
5.3.2 Rack-and-Pinion Steering
129(1)
5.3.3 Lever Arm Steering System
129(1)
5.3.4 Toe Bar Steering System
130(1)
5.3.5 Bus Steering System
130(1)
5.3.6 Dynamics of a Rack-and-Pinion Steering System
131(1)
5.3.6.1 Equation of Motion
131(2)
5.3.6.2 Steering Forces and Torques
133(3)
5.3.6.3 Parking Effort
136(4)
5.4 Kinematics of a Double Wishbone Suspension
140(14)
5.4.1 Modeling Aspects
140(1)
5.4.2 Position and Orientation
141(1)
5.4.3 Constraint Equations
142(1)
5.4.3.1 Control Arms and Wheel Body
142(2)
5.4.3.2 Steering Motion
144(1)
5.4.4 Velocities
145(3)
5.4.5 Acceleration
148(1)
5.4.6 Kinematic Analysis
149(5)
5.5 Design Kinematics
154(10)
5.5.1 General Approach
154(3)
5.5.2 Example Twist Beam Axle Suspension
157(7)
5.6 Race Car Suspension System
164(3)
5.6.1 General Layout
164(1)
5.6.2 Kinematics
165(2)
Exercises
167(2)
6 Force Elements
169(30)
6.1 Standard Force Elements
169(16)
6.1.1 Springs in General
169(2)
6.1.2 Air Springs
171(1)
6.1.3 Anti-Roll Bar
172(2)
6.1.4 Damper
174(2)
6.1.5 General Point-to-Point Force Element
176(1)
6.1.5.1 Generalized Forces
176(3)
6.1.5.2 Example
179(5)
6.1.6 Rubber Elements
184(1)
6.2 Dynamic Force Elements
185(13)
6.2.1 Testing and Evaluating Procedures
185(1)
6.2.1.1 Simple Approach
185(2)
6.2.1.2 Sweep Sine Excitation
187(2)
6.2.2 Spring Damper in Series
189(1)
6.2.2.1 Modeling Aspects
189(1)
6.2.2.2 Linear Characteristics
189(2)
6.2.2.3 Nonlinear Damper Topmount Combination
191(3)
6.2.3 General Dynamic Force Model
194(1)
6.2.4 Hydro-Mount
194(4)
Exercises
198(1)
7 Vertical Dynamics
199(36)
7.1 Goals
199(1)
7.2 From Complex to Simple Models
200(6)
7.3 Basic Tuning
206(6)
7.3.1 Natural Frequency and Damping Ratio
206(2)
7.3.2 Minimum Spring Rate
208(1)
7.3.3 Example
209(1)
7.3.4 Natural Eigenfrequencies
209(1)
7.3.5 Influence of Damping
210(2)
7.4 Optimal Damping
212(5)
7.4.1 Disturbance Reaction Problem
212(2)
7.4.2 Optimal Safety
214(1)
7.4.3 Optimal Comfort
215(2)
7.4.4 Example
217(1)
7.5 Practical Aspects
217(4)
7.5.1 General Remarks
217(1)
7.5.2 Quarter Car Model on Rough Road
218(3)
7.6 Nonlinear Suspension Forces
221(6)
7.6.1 Progressive Spring
221(2)
7.6.2 Nonlinear Spring and Nonlinear Damper
223(2)
7.6.3 Some Results
225(2)
7.7 Sky Hook Damper
227(6)
7.7.1 Modeling Aspects
227(1)
7.7.2 Eigenfrequencies and Damping Ratios
227(2)
7.7.3 Technical Realization
229(1)
7.7.4 Simulation Results
230(3)
Exercises
233(2)
8 Longitudinal Dynamics
235(36)
8.1 Dynamic Wheel Loads
236(2)
8.1.1 Simple Vehicle Model
236(1)
8.1.2 Influence of Grade
237(1)
8.1.3 Aerodynamic Forces
238(1)
8.2 Maximum Acceleration
238(2)
8.2.1 Tilting Limits
238(1)
8.2.2 Friction Limits
239(1)
8.3 Driving and Braking
240(8)
8.3.1 Single Axle Drive
240(1)
8.3.2 Braking at Single Axle
241(1)
8.3.3 Braking Stability
242(2)
8.3.4 Optimal Distribution of Drive and Brake Forces
244(1)
8.3.5 Different Distributions of Brake Forces
245(1)
8.3.6 Braking in a Turn
246(2)
8.3.7 Braking on μ-Split
248(1)
8.4 Anti-Lock System
248(9)
8.4.1 Basic Principle
248(2)
8.4.2 Demonstration Model
250(7)
8.5 Drive and Brake Pitch
257(12)
8.5.1 Enhanced Planar Vehicle Model
257(3)
8.5.2 Equations of Motion
260(1)
8.5.3 Equilibrium
261(1)
8.5.4 Driving and Braking
262(2)
8.5.5 Drive Pitch
264(2)
8.5.6 Brake Pitch
266(2)
8.5.7 Brake Pitch Pole
268(1)
Exercises
269(2)
9 Lateral Dynamics
271(46)
9.1 Kinematic Approach
272(10)
9.1.1 Kinematic Tire Model
272(1)
9.1.2 Ackermann Geometry
272(1)
9.1.3 Space Requirement
273(1)
9.1.4 Vehicle Model with Trailer
274(1)
9.1.4.1 Kinematics
274(2)
9.1.4.2 Vehicle Motion
276(1)
9.1.4.3 Entering a Curve
277(1)
9.1.4.4 Trailer Motions
278(1)
9.1.4.5 Course Calculations
279(3)
9.2 Steady-State Cornering
282(15)
9.2.1 Cornering Resistance
282(1)
9.2.1.1 Two-Axled Vehicle
282(2)
9.2.1.2 Four-Axled Vehicle
284(4)
9.2.2 Overturning Limit
288(1)
9.2.2.1 Static Stability Factor
288(1)
9.2.2.2 Enhanced Rollover Model
289(3)
9.2.3 Roll Support and Camber Compensation
292(4)
9.2.4 Roll Center and Roll Axis
296(1)
9.2.5 Wheel Load Transfer
297(1)
9.3 Simple Handling Model
297(13)
9.3.1 Modeling Concept
297(1)
9.3.2 Kinematics
298(1)
9.3.3 Tire Forces
298(1)
9.3.4 Lateral Slips
299(1)
9.3.5 Equations of Motion
300(1)
9.3.6 Stability
301(1)
9.3.6.1 Eigenvalues
301(1)
9.3.6.2 Low-Speed Approximation
302(1)
9.3.6.3 High-Speed Approximation
302(1)
9.3.6.4 Critical Speed
303(1)
9.3.6.5 Example
304(1)
9.3.7 Steady-State Solution
305(1)
9.3.7.1 Steering Tendency
305(2)
9.3.7.2 Side Slip Angle
307(1)
9.3.7.3 Curve Radius
307(1)
9.3.7.4 Lateral Slips
308(1)
9.3.8 Influence of Wheel Load on Cornering Stiffness
309(1)
9.4 Mechatronic Systems
310(4)
9.4.1 Electronic Stability Program (ESP)
310(1)
9.4.2 Rear-Wheel Steering
311(2)
9.4.3 Steer-by-Wire
313(1)
Exercises
314(3)
10 Driving Behavior of Single Vehicles
317(24)
10.1 Three-Dimensional Vehicle Model
317(7)
10.1.1 Model Structure
317(1)
10.1.2 Position and Orientation
318(1)
10.1.3 Velocities
319(3)
10.1.4 Accelerations
322(1)
10.1.5 Applied and Generalized Forces and Torques
322(1)
10.1.6 Equations of Motion
323(1)
10.2 Driver Model
324(2)
10.2.1 Standard Model
324(1)
10.2.2 Enhanced Model
325(1)
10.2.3 Simple Approach
326(1)
10.3 Standard Driving Maneuvers
326(4)
10.3.1 Steady-State Cornering
326(3)
10.3.2 Step Steer Input
329(1)
10.3.3 Driving Straight Ahead
330(1)
10.4 Coach with Different Loading Conditions
330(4)
10.4.1 Data
330(1)
10.4.2 Roll Steering
331(1)
10.4.3 Steady-State Cornering
331(2)
10.4.4 Step Steer Input
333(1)
10.5 Different Rear Axle Concepts for a Passenger Car
334(1)
10.6 Obstacle Avoidance and Off-Road Scenario
335(3)
Exercises
338(3)
Bibliography 341(6)
Glossary 347(2)
Index 349
Georg Rill has been a researcher and an educator for more than thirty years. He is professor at the OTH Regensburg, Germany.His first book, entitled Simulation von Kraftfahrzeugen, was published in 1994. Recently, he contributed the part Multibody Systems and Simulation Techniques to the book Vehicle Dynamics of Modern Passenger Cars.

Abel Arieta Castro is a research engineer at EFS, a major supplier of the automotive industry. He developed a robust and fault tolerant integrated control system to improve the stability of road vehicles in critical driving scenarios during his PhD. As a post-doc he spend several months at the OTH, where he deepened his knowledge on vehicle dynamics and tire modeling.