|
|
1 | (8) |
|
1.1 What Are Robust Data Representations? |
|
|
2 | (1) |
|
1.2 Organization of the Book |
|
|
3 | (6) |
|
Part I Robust Representation Models |
|
|
|
2 Fundamentals of Robust Representations |
|
|
9 | (8) |
|
2.1 Representation Learning Models |
|
|
9 | (2) |
|
|
9 | (1) |
|
2.1.2 Multi-view Subspace Learning |
|
|
10 | (1) |
|
2.1.3 Dictionary Learning |
|
|
11 | (1) |
|
2.2 Robust Representation Learning |
|
|
11 | (6) |
|
2.2.1 Subspace Clustering |
|
|
12 | (1) |
|
|
12 | (1) |
|
|
13 | (4) |
|
3 Robust Graph Construction |
|
|
17 | (28) |
|
|
17 | (3) |
|
3.2 Existing Graph Construction Methods |
|
|
20 | (2) |
|
3.2.1 Unbalanced Graphs and Balanced Graph |
|
|
20 | (1) |
|
3.2.2 Sparse Representation Based Graphs |
|
|
21 | (1) |
|
3.2.3 Low-Rank Learning Based Graphs |
|
|
21 | (1) |
|
3.3 Low-Rank Coding Based Unbalanced Graph Construction |
|
|
22 | (6) |
|
|
22 | (1) |
|
3.3.2 Problem Formulation |
|
|
23 | (2) |
|
|
25 | (2) |
|
3.3.4 Complexity Analysis |
|
|
27 | (1) |
|
|
28 | (1) |
|
3.4 Low-Rank Coding Based Balanced Graph Construction |
|
|
28 | (1) |
|
3.4.1 Motivation and Formulation |
|
|
28 | (1) |
|
|
29 | (1) |
|
|
29 | (2) |
|
3.5.1 Graph Based Clustering |
|
|
30 | (1) |
|
3.5.2 Transductive Semi-supervised Classification |
|
|
30 | (1) |
|
3.5.3 Inductive Semi-supervised Classification |
|
|
31 | (1) |
|
|
31 | (10) |
|
3.6.1 Databases and Settings |
|
|
32 | (1) |
|
3.6.2 Spectral Clustering with Graph |
|
|
33 | (2) |
|
3.6.3 Semi-supervised Classification with Graph |
|
|
35 | (3) |
|
|
38 | (3) |
|
|
41 | (4) |
|
|
41 | (4) |
|
4 Robust Subspace Learning |
|
|
45 | (28) |
|
|
45 | (4) |
|
4.2 Supervised Regularization Based Robust Subspace (SRRS) |
|
|
49 | (8) |
|
4.2.1 Problem Formulation |
|
|
49 | (3) |
|
4.2.2 Theoretical Analysis |
|
|
52 | (1) |
|
|
53 | (2) |
|
4.2.4 Algorithm and Discussions |
|
|
55 | (2) |
|
|
57 | (12) |
|
4.3.1 Object Recognition with Pixel Corruption |
|
|
57 | (6) |
|
4.3.2 Face Recognition with Illumination and Pose Variation |
|
|
63 | (2) |
|
4.3.3 Face Recognition with Occlusions |
|
|
65 | (1) |
|
4.3.4 Kinship Verification |
|
|
66 | (1) |
|
|
67 | (2) |
|
|
69 | (4) |
|
|
69 | (4) |
|
5 Robust Multi-view Subspace Learning |
|
|
73 | (22) |
|
|
73 | (3) |
|
|
76 | (1) |
|
5.3 Multi-view Discriminative Bilinear Projection (MDBP) |
|
|
77 | (7) |
|
|
78 | (1) |
|
5.3.2 Formulation of MDBP |
|
|
78 | (3) |
|
5.3.3 Optimization Algorithm |
|
|
81 | (2) |
|
5.3.4 Comparison with Existing Methods |
|
|
83 | (1) |
|
|
84 | (7) |
|
5.4.1 UCI Daily and Sports Activity Dataset |
|
|
84 | (3) |
|
5.4.2 Multimodal Spoken Word Dataset |
|
|
87 | (1) |
|
|
88 | (3) |
|
|
91 | (4) |
|
|
91 | (4) |
|
6 Robust Dictionary Learning |
|
|
95 | (28) |
|
|
95 | (4) |
|
6.2 Self-Taught Low-Rank (S-Low) Coding |
|
|
99 | (7) |
|
|
99 | (1) |
|
6.2.2 Problem Formulation |
|
|
100 | (2) |
|
|
102 | (2) |
|
6.2.4 Algorithm and Discussions |
|
|
104 | (2) |
|
6.3 Learning with S-Low Coding |
|
|
106 | (1) |
|
|
106 | (1) |
|
6.3.2 S-Low Classification |
|
|
107 | (1) |
|
|
107 | (9) |
|
6.4.1 Datasets and Settings |
|
|
107 | (3) |
|
|
110 | (2) |
|
|
112 | (1) |
|
6.4.4 Classification Results |
|
|
113 | (3) |
|
|
116 | (1) |
|
|
116 | (7) |
|
|
117 | (6) |
|
|
|
7 Robust Representations for Collaborative Filtering |
|
|
123 | (24) |
|
|
123 | (2) |
|
7.2 Collaborative Filtering |
|
|
125 | (2) |
|
7.2.1 Matrix Factorization for Collaborative Filtering |
|
|
125 | (1) |
|
7.2.2 Deep Learning for Collaborative Filtering |
|
|
126 | (1) |
|
|
127 | (2) |
|
7.3.1 Matrix Factorization |
|
|
127 | (1) |
|
7.3.2 Marginalized Denoising Auto-encoder (mDA) |
|
|
128 | (1) |
|
|
129 | (7) |
|
7.4.1 Deep Collaborative Filtering (DCF): A General Framework |
|
|
130 | (1) |
|
7.4.2 DCF Using PMF + mDA |
|
|
131 | (4) |
|
|
135 | (1) |
|
|
136 | (8) |
|
7.5.1 Movie Recommendation |
|
|
137 | (3) |
|
7.5.2 Book Recommendation |
|
|
140 | (1) |
|
7.5.3 Response Prediction |
|
|
141 | (2) |
|
|
143 | (1) |
|
|
144 | (3) |
|
|
145 | (2) |
|
8 Robust Representations for Response Prediction |
|
|
147 | (28) |
|
|
147 | (2) |
|
|
149 | (2) |
|
8.2.1 Prediction Models with Temporal Dynamics |
|
|
150 | (1) |
|
8.2.2 Prediction Models with Side Information |
|
|
151 | (1) |
|
|
151 | (2) |
|
|
152 | (1) |
|
|
152 | (1) |
|
8.4 Dynamic Collective Matrix Factorization (DCMF) with Side Information |
|
|
153 | (6) |
|
8.4.1 CMF for Conversion Prediction |
|
|
153 | (2) |
|
8.4.2 Modeling Temporal Dynamics |
|
|
155 | (2) |
|
8.4.3 Modeling Side Information |
|
|
157 | (1) |
|
|
157 | (2) |
|
|
159 | (3) |
|
|
159 | (2) |
|
|
161 | (1) |
|
|
162 | (8) |
|
8.6.1 Experiments on Public Data |
|
|
162 | (2) |
|
8.6.2 Conversion Prediction: Settings |
|
|
164 | (2) |
|
8.6.3 Conversion Prediction: Results and Discussions |
|
|
166 | (2) |
|
8.6.4 Effectiveness Measurement of Ads |
|
|
168 | (1) |
|
|
168 | (2) |
|
|
170 | (5) |
|
|
171 | (4) |
|
9 Robust Representations for Outlier Detection |
|
|
175 | (28) |
|
|
175 | (4) |
|
|
179 | (2) |
|
|
179 | (1) |
|
9.2.2 Multi-view Outliers |
|
|
180 | (1) |
|
9.3 Multi-view Low-Rank Analysis (MLRA) |
|
|
181 | (5) |
|
9.3.1 Cross-View Low-Rank Analysis |
|
|
181 | (4) |
|
9.3.2 Outlier Score Estimation |
|
|
185 | (1) |
|
9.4 MLRA for Multi-view Group Outlier Detection |
|
|
186 | (3) |
|
|
187 | (1) |
|
9.4.2 Formulation and Algorithm |
|
|
187 | (2) |
|
|
189 | (7) |
|
9.5.1 Baselines and Evaluation Metrics |
|
|
189 | (1) |
|
9.5.2 Synthetic Multi-view Settings on Real Data |
|
|
190 | (4) |
|
9.5.3 Real-World Multi-view Data with Synthetic Outliers |
|
|
194 | (1) |
|
9.5.4 Real-World Multi-view Data with Real Outliers |
|
|
195 | (1) |
|
9.5.5 Group Outlier Detection |
|
|
195 | (1) |
|
|
196 | (1) |
|
|
196 | (7) |
|
|
199 | (4) |
|
10 Robust Representations for Person Re-identification |
|
|
203 | (20) |
|
|
203 | (2) |
|
10.2 Person Re-identification |
|
|
205 | (1) |
|
10.3 Cross-View Projective Dictionary Learning (CPDL) |
|
|
205 | (2) |
|
|
205 | (1) |
|
10.3.2 Formulation of CPDL |
|
|
206 | (1) |
|
10.4 CPDL for Person Re-identification |
|
|
207 | (4) |
|
10.4.1 Feature Extraction |
|
|
207 | (1) |
|
10.4.2 CPDL for Image Representation |
|
|
208 | (1) |
|
10.4.3 CPDL for Patch Representation |
|
|
209 | (1) |
|
10.4.4 Matching and Fusion |
|
|
210 | (1) |
|
|
211 | (2) |
|
10.5.1 Optimizing Image-Level Representations |
|
|
211 | (1) |
|
10.5.2 Optimizing Patch-Level Representations |
|
|
212 | (1) |
|
|
213 | (7) |
|
|
214 | (1) |
|
|
214 | (1) |
|
10.6.3 CUHK01 Campus Dataset |
|
|
215 | (2) |
|
|
217 | (1) |
|
|
218 | (2) |
|
|
220 | (3) |
|
|
220 | (3) |
Index |
|
223 | |