Muutke küpsiste eelistusi

Robust Representation for Data Analytics: Models and Applications Softcover reprint of the original 1st ed. 2017 [Pehme köide]

  • Formaat: Paperback / softback, 224 pages, kõrgus x laius: 235x155 mm, kaal: 496 g, 49 Illustrations, color; 3 Illustrations, black and white; XI, 224 p. 52 illus., 49 illus. in color., 1 Paperback / softback
  • Sari: Advanced Information and Knowledge Processing
  • Ilmumisaeg: 04-Aug-2018
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319867962
  • ISBN-13: 9783319867960
  • Pehme köide
  • Hind: 113,55 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 133,59 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 224 pages, kõrgus x laius: 235x155 mm, kaal: 496 g, 49 Illustrations, color; 3 Illustrations, black and white; XI, 224 p. 52 illus., 49 illus. in color., 1 Paperback / softback
  • Sari: Advanced Information and Knowledge Processing
  • Ilmumisaeg: 04-Aug-2018
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319867962
  • ISBN-13: 9783319867960
This book introduces the concepts and models of robust representation learning, and provides a set of solutions to deal with real-world data analytics tasks, such as clustering, classification, time series modeling, outlier detection, collaborative filtering, community detection, etc. Three types of robust feature representations are developed, which extend the understanding of graph, subspace, and dictionary.

Leveraging the theory of low-rank and sparse modeling, the authors develop robust feature representations under various learning paradigms, including unsupervised learning, supervised learning, semi-supervised learning, multi-view learning, transfer learning, and deep learning. Robust Representations for Data Analytics covers a wide range of applications in the research fields of big data, human-centered computing, pattern recognition, digital marketing, web mining, and computer vision.

Introduction.- Fundamentals of Robust Representations.- Part 1: Robust
Representation Models.- Robust Graph Construction.- Robust Subspace
Learning.- Robust Multi-View Subspace Learning.- Part 11: Applications.-
Robust Representations for Collaborative Filtering.- Robust Representations
for Response Prediction.- Robust Representations for Outlier Detection.-
 Robust Representations for Person Re-Identification.- Robust Representations
for Community Detection.-  Index.