Muutke küpsiste eelistusi

Separated Representations and PGD-Based Model Reduction: Fundamentals and Applications [Kõva köide]

  • Formaat: Hardback, 227 pages, kõrgus x laius: 235x155 mm, kaal: 524 g, 40 Illustrations, color; 34 Illustrations, black and white; VII, 227 p. 74 illus., 40 illus. in color., 1 Hardback
  • Sari: CISM International Centre for Mechanical Sciences 554
  • Ilmumisaeg: 23-Sep-2014
  • Kirjastus: Springer Verlag GmbH
  • ISBN-10: 3709117933
  • ISBN-13: 9783709117934
Teised raamatud teemal:
  • Kõva köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 227 pages, kõrgus x laius: 235x155 mm, kaal: 524 g, 40 Illustrations, color; 34 Illustrations, black and white; VII, 227 p. 74 illus., 40 illus. in color., 1 Hardback
  • Sari: CISM International Centre for Mechanical Sciences 554
  • Ilmumisaeg: 23-Sep-2014
  • Kirjastus: Springer Verlag GmbH
  • ISBN-10: 3709117933
  • ISBN-13: 9783709117934
Teised raamatud teemal:
The papers in this volume start with a description of the construction of reduced models through a review of Proper Orthogonal Decomposition (POD) and reduced basis models, including their mathematical foundations and some challenging applications, then followed by a description of a new generation of simulation strategies based on the use of separated representations (space-parameters, space-time, space-time-parameters, space-space, ), which have led to what is known as Proper Generalized Decomposition (PGD) techniques. The models can be enriched by treating parameters as additional coordinates, leading to fast and inexpensive online calculations based on richer offline parametric solutions. Separated representations are analyzed in detail in the course, from their mathematical foundations to their most spectacular applications. It is also shown how such an approximation could evolve into a new paradigm in computational science, enabling one to circumvent various computational is

sues in a vast array of applications in engineering science.

Model order reduction based on proper orthogonal decomposition: Model reduction: extracting relevant information.- Interpolation of reduced basis: a geometrical approach.- POD for non-linear models.- Conclusions.- PGD for solving multidimensional and parametric models: Introduction.- Separated representations.- Advanced topics.- Models defined in plate and shell geometries.- Computational vademecums.- PGD in linear and nonlinear Computational Solid Mechanics: Introduction.- PGD Verification for linear problems (elliptic and parabolic).- PGD for time dependent nonlinear problems (monoscale and multiscale problems).- Reduced basis approximation and error estimation for parameterized elliptic partial differential equations and applications: Introduction and motivation.- Parameterized problems.- High order and reduced order models with reduced basis method: greedy algorithm and a posteriori error estimation.- Applications.- Conclusion.
Model order reduction based on proper orthogonal decomposition
1(26)
E. Cueto
F. Chinesta
A. Huerta
PGD for solving multidimensional and parametric models
27(64)
F. Chinesta
E. Cueto
A. Huerta
PGD in linear and nonlinear Computational Solid Mechanics
91(62)
P. Ladeveze
Fundamentals of reduced basis method for problems governed by parametrized PDEs and applications
153
G. Rozza