Muutke küpsiste eelistusi

E-raamat: Separated Representations and PGD-Based Model Reduction: Fundamentals and Applications

  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The papers in this volume start with a description of the construction of reduced models through a review of Proper Orthogonal Decomposition (POD) and reduced basis models, including their mathematical foundations and some challenging applications, then followed by a description of a new generation of simulation strategies based on the use of separated representations (space-parameters, space-time, space-time-parameters, space-space, ), which have led to what is known as Proper Generalized Decomposition (PGD) techniques. The models can be enriched by treating parameters as additional coordinates, leading to fast and inexpensive online calculations based on richer offline parametric solutions. Separated representations are analyzed in detail in the course, from their mathematical foundations to their most spectacular applications. It is also shown how such an approximation could evolve into a new paradigm in computational science, enabling one to circumvent various computational is

sues in a vast array of applications in engineering science.

Model order reduction based on proper orthogonal decomposition: Model reduction: extracting relevant information.- Interpolation of reduced basis: a geometrical approach.- POD for non-linear models.- Conclusions.- PGD for solving multidimensional and parametric models: Introduction.- Separated representations.- Advanced topics.- Models defined in plate and shell geometries.- Computational vademecums.- PGD in linear and nonlinear Computational Solid Mechanics: Introduction.- PGD Verification for linear problems (elliptic and parabolic).- PGD for time dependent nonlinear problems (monoscale and multiscale problems).- Reduced basis approximation and error estimation for parameterized elliptic partial differential equations and applications: Introduction and motivation.- Parameterized problems.- High order and reduced order models with reduced basis method: greedy algorithm and a posteriori error estimation.- Applications.- Conclusion.
Model order reduction based on proper orthogonal decomposition
1(26)
E. Cueto
F. Chinesta
A. Huerta
PGD for solving multidimensional and parametric models
27(64)
F. Chinesta
E. Cueto
A. Huerta
PGD in linear and nonlinear Computational Solid Mechanics
91(62)
P. Ladeveze
Fundamentals of reduced basis method for problems governed by parametrized PDEs and applications
153
G. Rozza