Muutke küpsiste eelistusi

Simulation Based Engineering in Fluid Flow Design 1st ed. 2017 [Kõva köide]

  • Formaat: Hardback, 183 pages, kõrgus x laius: 235x155 mm, kaal: 4624 g, 62 Illustrations, color; 40 Illustrations, black and white; XV, 183 p. 102 illus., 62 illus. in color., 1 Hardback
  • Ilmumisaeg: 13-Feb-2017
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319463810
  • ISBN-13: 9783319463810
Teised raamatud teemal:
  • Kõva köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 183 pages, kõrgus x laius: 235x155 mm, kaal: 4624 g, 62 Illustrations, color; 40 Illustrations, black and white; XV, 183 p. 102 illus., 62 illus. in color., 1 Hardback
  • Ilmumisaeg: 13-Feb-2017
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319463810
  • ISBN-13: 9783319463810
Teised raamatud teemal:
This volume offers a tool for High Performance Computing (HPC). A brief historical background on the subject is first given. Fluid Statics dealing with Pressure in fluids at rest, Buoyancy and Basics of Thermodynamics are next presented.The Finite Volume Method, the most convenient process for HPC, is explained in one-dimensional approach to diffusion with convection and pressure velocity coupling. Adiabatic, isentropic and supersonic flows in quasi-one dimensional flows in axisymmetric nozzles is considered before applying CFD solutions. Though the theory is restricted to one-dimensional cases, three-dimensional CFD examples are also given. Lastly, nozzle flows with normal shocks are presented using turbulence models.Worked examples and exercises are given in each chapter.Fluids transport thermal energy for its conversion to kinetic energy, thus playing a major role that is central to all heat engines. With the advent of rotating machinery in the 20th century, Fluid Enginee

ring was developed in the form of hydraulics and hydrodynamics and adapted in engineering Schools across the world until recent times. With the High Performance Computing (HPC) in recent years, Simulation Based Engineering Science (SBES) has gradually replaced the conventional approach in Fluid Flow Design bringing Science directly into Engineering without approximations. Hence this SpringerBrief in Applied Sciences and Technology.This book brings SBES to an entry level allowing young students to quickly adapt to modern design practices. 

Acknowledgements.- 1. Introduction.- 2. Fluid Statics.- 2.1 States of Matter.- 2.2 Pressure in fluids at rest.- 2.3 Buoyancy.- 2.4 Basics of Thermodynamics.- 3. Fluid Dynamics.- 3.1 Characteristics of Fluids.- 3.2 Mass Balance.- 3.3 Force Balance and Momentum Equations.- 3.4 Energy Equation.- 3.5 Kinetic Energy.- 3.6 Internal Energy.- 3.7 Shear Stresses.- 3.8 Equations of Motion.- 3.9 Summary of Fluid Flow Equations.- 4. Finite Volume Method - Diffusion Problems.- 4.1 Diffusion Problem.- 4.2 Diffusion with Source Term.- 4.3 Diffusion with Convection.- 5. Finite Volume Method - Convection-Diffusion Problems.- 5.1 Steady State one-dimensional convection and diffusion.- 6. Pressure Velocity Coupling.- 6.1 Steady State one-dimensional incompressible problem.- 6.2 Pitot and Venturi Tubes.- 6.3 Stagnation Conditions in Adiabatic Flow.- 6.4 Isentropic Flow.- 6.5 Speed of Sound.- 6.6 Shocks in Supersonic Flow.- 6.7 Other Forms of Energy Equation for Adiabatic Flow.- 6.8 Quasi-One dimensio

nal Flow.- 6.9 Area-Velocity relation.- 6.10 Example of Nozzle Flow - Subsonic Flow throughout.- 6.11 Nozzle Flow - Subsonic Flow with Sonic Conditions at the Throat.- 6.12 Nozzle Flow - Supersonic Flow with Perfect Expansion.- 6.13 CFD Solution of Isentropic Flow in Converging-Diverging Nozzles.- 7. Turbulence.- 7.1 What is Turbulence .- 7.2 Reynolds Equations.- 7.3 Nozzle Flow with a Normal Shock in the Divergent Portion.- 7.4 CFD Solution of Flow in Converging-Diverging Nozzles with a Normal Shock.- 8. Epilogue.- Index. 
1 Introduction
1(22)
2 Fluid Statics
23(32)
2.1 States of Matter
23(1)
2.2 Pressure in Fluids at Rest
24(5)
2.3 Buoyancy
29(7)
2.3.1 Application of Buoyancy Principle to the Stability of a Ship
31(1)
2.3.2 Balloons and Airships
32(1)
2.3.3 Hydrostatics of Dam
33(3)
2.4 Basics of Thermodynamics
36(19)
2.4.1 Zeroth Law
37(1)
2.4.2 Hydrostatics of Gases
37(1)
2.4.3 Vapor Pressure
38(2)
2.4.4 Internal Energy
40(1)
2.4.5 Enthalpy
40(1)
2.4.6 Specific Heats
41(1)
2.4.7 Polytropic Form for Pressure-Specific Volume Relation
42(2)
2.4.8 First Law of Thermodynamics
44(1)
2.4.9 Adiabatic Process
45(1)
2.4.10 Irreversible Process
45(1)
2.4.11 Reversible Process
46(1)
2.4.12 Entropy and Second Law of Thermodynamics
46(1)
2.4.13 Entropy
47(1)
2.4.14 Entropy Calculation for Any Process
48(1)
2.4.15 Isentropic Process
49(6)
3 Fluid Dynamics
55(20)
3.1 Characteristics of Fluids
58(2)
3.2 Mass Balance
60(2)
3.3 Force Balance and Momentum Equations
62(3)
3.4 Energy Equation
65(4)
3.5 Kinetic Energy
69(1)
3.6 Internal Energy
69(1)
3.7 Shear Stresses
70(1)
3.8 Equations of Motion
71(1)
3.9 Summary of Fluid Flow Equations
72(3)
4 Finite Volume Method---Diffusion Problems
75(24)
4.1 Diffusion Problem
77(7)
4.2 Diffusion with Source Term
84(6)
4.3 Diffusion with Convection
90(9)
5 Finite Volume Method---Convection-Diffusion Problems
99(8)
5.1 Steady State One-Dimensional Convection and Diffusion
99(8)
5.1.1 Exact Solution for Convection-Diffusion Problem
102(1)
5.1.2 Finite Volume Method for Convection-Diffusion Problem
103(4)
6 Pressure---Velocity Coupling in Steady Flows
107(48)
6.1 Steady State One-Dimensional Incompressible Problem
108(3)
6.1.1 Streamline Flow
109(2)
6.2 Pitot and Venturi Tubes
111(3)
6.3 Stagnation Conditions in Adiabatic Flow
114(1)
6.4 Isentropic Flow
115(1)
6.5 Speed of Sound
116(3)
6.6 Shocks in Supersonic Flow
119(2)
6.7 Other Forms of Energy Equation for Adiabatic Flow
121(4)
6.7.1 Mach Number for Which the Flow Can Be Considered Incompressible
123(2)
6.7.2 Characteristic Mach Number
125(1)
6.8 Quasi-One Dimensional Flow
125(3)
6.9 Area-Velocity Relation
128(4)
6.9.1 Continuity Equation in Differential Form
128(1)
6.9.2 Momentum Equation in Differential Form
129(1)
6.9.3 Energy Equation in Differential Form
130(2)
6.10 Example of Nozzle Flow---Subsonic Flow Throughout
132(8)
6.10.1 Example of Axisymmetric Nozzle Flow
134(3)
6.10.2 Subsonic Flow
137(3)
6.11 Nozzle Flow---Subsonic Flow with Sonic Conditions at the Throat
140(2)
6.12 Nozzle Flow---Supersonic Flow with Perfect Expansion
142(2)
6.13 CFD Solution of Isentropic Flow in Converging-Diverging Nozzles
144(11)
7 Turbulence
155(24)
7.1 What Is Turbulence?
157(2)
7.2 Reynolds Equations
159(7)
7.2.1 Reynolds Averaged Navier-Stokes Equations, RANS
161(1)
7.2.2 Boussinesq Hypothesis
162(1)
7.2.3 Prandtl's Mixing Length Model
163(1)
7.2.4 k-ε Model
163(3)
7.3 Nozzle Flow with a Normal Shock in the Divergent Portion
166(9)
7.3.1 Normal Shock
166(9)
7.4 CFD Solution of Flow in Converging-Diverging Nozzles with a Normal Shock
175(4)
8 Epilogue
179(2)
Index 181
Professor J.S. Rao is Chief Science office at Altair Engineering India Ltd, President of the Vibration Institute of India and Editor in chief of the Journal of Vibration Engineering and Technologies.