Muutke küpsiste eelistusi

Singularities in Gravitational Systems: Applications to Chaotic Transport in the Solar System 2002 ed. [Kõva köide]

Edited by , Edited by
  • Formaat: Hardback, 216 pages, kõrgus x laius: 235x155 mm, kaal: 1110 g, XI, 216 p., 1 Hardback
  • Sari: Lecture Notes in Physics 590
  • Ilmumisaeg: 04-Sep-2002
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3540437657
  • ISBN-13: 9783540437659
Teised raamatud teemal:
  • Kõva köide
  • Hind: 48,66 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 57,25 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 216 pages, kõrgus x laius: 235x155 mm, kaal: 1110 g, XI, 216 p., 1 Hardback
  • Sari: Lecture Notes in Physics 590
  • Ilmumisaeg: 04-Sep-2002
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3540437657
  • ISBN-13: 9783540437659
Teised raamatud teemal:
Chaos theory plays an important role in modern physics and related sciences, but -, the most important results so far have been obtained in the study of gravitational systems applied to celestial mechanics. The present set of lectures introduces the mathematical methods used in the theory of singularities in gravitational systems, reviews modeling techniques for the simulation of close encounters and presents the state of the art about the study of diffusion of comets, wandering asteroids, meteors and planetary ring particles. The book will be of use to researchers and graduate students alike.

Arvustused

"[ ] The book contains many interesting and attractive topics for a wide audience, and reaches the high standards of the previous works of the editors." (Antonio Elipe, Celestial Mechanics An International Journal of Space Dynamics 2004, vol. 89, page 97-98)

Singularities, Collisions and Regularization Theory
1(24)
Alessandra Celletti
Introduction
1(2)
A world of singularities
3(1)
Past and future collisions in the Solar System
4(5)
Regularization theory
9(8)
Triple collisions and central configurations
17(1)
Chaotic diffusion: the inclined billiard
18(2)
Noncollision singularities
20(5)
References
23(2)
The Levi--Civita, KS and Radial--Inversion Regularizing Transformations
25(24)
Alessandra Celletti
Introduction
25(1)
The two- and three-body problem
26(3)
The two-body problem
26(1)
The planar, circular, restricted three-body problem
26(3)
The Levi--Civita regularization
29(7)
The two-body problem
29(3)
The planar, circular, restricted three-body problem
32(4)
The Kustaanheimo--Stiefel regularization
36(8)
The Kustaanheimo--Stiefel transformation
36(3)
Canonicity of the KS-transformation
39(5)
The radial--inversion transformation
44(5)
References
48(1)
The Birkhoff and B3 Regularizing Transformations
49(14)
Maria Gabriella Della Penna
Introduction
49(1)
The Birkhoff regularization
49(8)
The B3 regularization
57(3)
Numerical integration
60(3)
References
62(1)
Perturbative Methods in Regularization Theory
63(9)
Corrado Falcolini
Introduction
63(1)
Regularization procedure
63(4)
The general case
64(1)
The fictitious-time case
64(1)
The generalized eccentric anomaly case
65(2)
Analytic perturbative methods
67(5)
Hamilton--Jacobi for the fictitious-time case
67(1)
Hamilton--Jacobi for the generalized eccentric anomaly case
68(1)
Series expansion
69(1)
First-order perturbation
70(1)
References
71(1)
Collisions and Singularities in the n-body Problem
72(9)
Corrado Falcolini
Introduction
72(1)
Non-collision singularities in Newtonian systems
72(3)
The n-body problem
73(2)
The solution
75(3)
The example of Mather and McGehee
75(1)
The first example of Gerver
75(1)
The example of Xia
76(1)
The second example of Gerver
77(1)
Multiple and simultaneous binary collisions
78(1)
Open questions
79(2)
References
79(2)
Triple Collision and Close Triple Encounters
81(20)
Jorg Waldvogel
Basics
81(5)
The general three-body problem: equations of motion, integrals of motion
82(1)
Angular momentum, Sundman's theory
83(3)
Triple collision
86(8)
Homographic and homothetic solutions
86(1)
Central configurations
87(3)
Triple collision, Siegel's series
90(4)
The close triple encounter
94(7)
Singular perturbations
95(1)
The triple-collision manifold
96(2)
References
98(3)
Dynamical and Kinetic Aspects of Collisions
101(13)
Yves Elskens
Introduction
101(1)
N-body dynamics
101(1)
Invariants, approximate motion and collisions
102(2)
Collisions and Lyapunov exponents
104(1)
Kinetic theory and BBGKY hierarchy
105(2)
Mean-field limit and Vlasov equation
107(2)
Vlasov--Poisson equation for Coulomb and Newton interactions
109(1)
Boltzmann--Grad limit and Boltzmann equation
110(1)
Entropy dissipation for the Boltzmann equation
111(3)
References
113(1)
Chaotic Scattering in Planetary Rings
114(31)
Jean-Marc Petit
Introduction
114(1)
Dynamics of planetary rings
115(12)
The physical problem
115(1)
Equations of motion
115(7)
Chaotic scattering
122(3)
Other examples
125(2)
Symbolic dynamics
127(5)
The Bernoulli shift
129(1)
Topological mappings
130(1)
C1 mappings
131(1)
Homoclinic points
132(1)
The inclined billiard
132(13)
The model and an interesting limit
133(4)
Properties of the motion
137(4)
Symbolic dynamics
141(3)
References
144(1)
Close Encounters in Opik's Theory
145(34)
Giovanni B. Valsecchi
Introduction
145(1)
Basic formulae of Opik's theory
146(5)
The components of the planetocentric velocity
146(1)
The angles θ and ø
147(1)
The rotation of U
148(3)
From the planetocentric to the b-plane frame and back
151(3)
The ecliptic on the b-plane
152(1)
The projection of the X-axis on the b-plane
152(1)
The projection of the Y-axis on the b-plane
152(1)
The projection of the Z-axis on the b-plane
153(1)
Examples
153(1)
The motion of the small body
154(10)
The local Minimum Orbital Intersection Distance (MOID)
155(1)
The planetocentric orbital elements of the small body
156(1)
The encounter
157(3)
The new local MOID
160(1)
Post-encounter coordinates in the post-encounter b-plane
161(1)
The next encounter
162(2)
Resonant returns in Opik's theory
164(2)
Solving for a given final semimajor axis
164(1)
Examples
165(1)
The distribution of energy perturbations
166(4)
Energy perturbations for a given MOID
170(1)
Geocentric variables to characterize meteor orbits
170(9)
An orbital similarity criterion based on geocentric quantities
171(4)
Secular invariance of U and θ
175(2)
References
177(2)
Generalized Averaging Principle and Proper Elements for NEAs
179(34)
Giovanni-Federico Gronchi
Introduction
179(1)
The classical averaging principle
180(3)
The full equations of motion
180(1)
The averaged equations
181(2)
Difficulties arising with crossing orbits
183(1)
Generalized averaging principle in the circular coplanar case
183(16)
Geometry of the node crossing
183(3)
Description of the osculating orbits
186(1)
Weak averaged solutions
187(1)
The Wetherill function
188(2)
Kantorovich's method
190(1)
Integration of 1/d
191(3)
Boundedness of the remainder function
194(2)
The derivatives of the averaged perturbing function R
196(3)
Secular evolution theory
199(4)
The secular evolution algorithm
201(1)
Different dynamical behavior of NEAs
202(1)
Proper elements for NEAs
203(4)
Reliability tests
207(1)
Generalized averaging principle in the eccentric--inclined case
208(2)
The mutual reference frame
209(1)
Conclusions
210(3)
References
210(3)
Subject Index 213