|
Singularities, Collisions and Regularization Theory |
|
|
1 | (24) |
|
|
|
1 | (2) |
|
|
3 | (1) |
|
Past and future collisions in the Solar System |
|
|
4 | (5) |
|
|
9 | (8) |
|
Triple collisions and central configurations |
|
|
17 | (1) |
|
Chaotic diffusion: the inclined billiard |
|
|
18 | (2) |
|
Noncollision singularities |
|
|
20 | (5) |
|
|
23 | (2) |
|
The Levi--Civita, KS and Radial--Inversion Regularizing Transformations |
|
|
25 | (24) |
|
|
|
25 | (1) |
|
The two- and three-body problem |
|
|
26 | (3) |
|
|
26 | (1) |
|
The planar, circular, restricted three-body problem |
|
|
26 | (3) |
|
The Levi--Civita regularization |
|
|
29 | (7) |
|
|
29 | (3) |
|
The planar, circular, restricted three-body problem |
|
|
32 | (4) |
|
The Kustaanheimo--Stiefel regularization |
|
|
36 | (8) |
|
The Kustaanheimo--Stiefel transformation |
|
|
36 | (3) |
|
Canonicity of the KS-transformation |
|
|
39 | (5) |
|
The radial--inversion transformation |
|
|
44 | (5) |
|
|
48 | (1) |
|
The Birkhoff and B3 Regularizing Transformations |
|
|
49 | (14) |
|
Maria Gabriella Della Penna |
|
|
|
49 | (1) |
|
The Birkhoff regularization |
|
|
49 | (8) |
|
|
57 | (3) |
|
|
60 | (3) |
|
|
62 | (1) |
|
Perturbative Methods in Regularization Theory |
|
|
63 | (9) |
|
|
|
63 | (1) |
|
|
63 | (4) |
|
|
64 | (1) |
|
|
64 | (1) |
|
The generalized eccentric anomaly case |
|
|
65 | (2) |
|
Analytic perturbative methods |
|
|
67 | (5) |
|
Hamilton--Jacobi for the fictitious-time case |
|
|
67 | (1) |
|
Hamilton--Jacobi for the generalized eccentric anomaly case |
|
|
68 | (1) |
|
|
69 | (1) |
|
|
70 | (1) |
|
|
71 | (1) |
|
Collisions and Singularities in the n-body Problem |
|
|
72 | (9) |
|
|
|
72 | (1) |
|
Non-collision singularities in Newtonian systems |
|
|
72 | (3) |
|
|
73 | (2) |
|
|
75 | (3) |
|
The example of Mather and McGehee |
|
|
75 | (1) |
|
The first example of Gerver |
|
|
75 | (1) |
|
|
76 | (1) |
|
The second example of Gerver |
|
|
77 | (1) |
|
Multiple and simultaneous binary collisions |
|
|
78 | (1) |
|
|
79 | (2) |
|
|
79 | (2) |
|
Triple Collision and Close Triple Encounters |
|
|
81 | (20) |
|
|
|
81 | (5) |
|
The general three-body problem: equations of motion, integrals of motion |
|
|
82 | (1) |
|
Angular momentum, Sundman's theory |
|
|
83 | (3) |
|
|
86 | (8) |
|
Homographic and homothetic solutions |
|
|
86 | (1) |
|
|
87 | (3) |
|
Triple collision, Siegel's series |
|
|
90 | (4) |
|
The close triple encounter |
|
|
94 | (7) |
|
|
95 | (1) |
|
The triple-collision manifold |
|
|
96 | (2) |
|
|
98 | (3) |
|
Dynamical and Kinetic Aspects of Collisions |
|
|
101 | (13) |
|
|
|
101 | (1) |
|
|
101 | (1) |
|
Invariants, approximate motion and collisions |
|
|
102 | (2) |
|
Collisions and Lyapunov exponents |
|
|
104 | (1) |
|
Kinetic theory and BBGKY hierarchy |
|
|
105 | (2) |
|
Mean-field limit and Vlasov equation |
|
|
107 | (2) |
|
Vlasov--Poisson equation for Coulomb and Newton interactions |
|
|
109 | (1) |
|
Boltzmann--Grad limit and Boltzmann equation |
|
|
110 | (1) |
|
Entropy dissipation for the Boltzmann equation |
|
|
111 | (3) |
|
|
113 | (1) |
|
Chaotic Scattering in Planetary Rings |
|
|
114 | (31) |
|
|
|
114 | (1) |
|
Dynamics of planetary rings |
|
|
115 | (12) |
|
|
115 | (1) |
|
|
115 | (7) |
|
|
122 | (3) |
|
|
125 | (2) |
|
|
127 | (5) |
|
|
129 | (1) |
|
|
130 | (1) |
|
|
131 | (1) |
|
|
132 | (1) |
|
|
132 | (13) |
|
The model and an interesting limit |
|
|
133 | (4) |
|
|
137 | (4) |
|
|
141 | (3) |
|
|
144 | (1) |
|
Close Encounters in Opik's Theory |
|
|
145 | (34) |
|
|
|
145 | (1) |
|
Basic formulae of Opik's theory |
|
|
146 | (5) |
|
The components of the planetocentric velocity |
|
|
146 | (1) |
|
|
147 | (1) |
|
|
148 | (3) |
|
From the planetocentric to the b-plane frame and back |
|
|
151 | (3) |
|
The ecliptic on the b-plane |
|
|
152 | (1) |
|
The projection of the X-axis on the b-plane |
|
|
152 | (1) |
|
The projection of the Y-axis on the b-plane |
|
|
152 | (1) |
|
The projection of the Z-axis on the b-plane |
|
|
153 | (1) |
|
|
153 | (1) |
|
The motion of the small body |
|
|
154 | (10) |
|
The local Minimum Orbital Intersection Distance (MOID) |
|
|
155 | (1) |
|
The planetocentric orbital elements of the small body |
|
|
156 | (1) |
|
|
157 | (3) |
|
|
160 | (1) |
|
Post-encounter coordinates in the post-encounter b-plane |
|
|
161 | (1) |
|
|
162 | (2) |
|
Resonant returns in Opik's theory |
|
|
164 | (2) |
|
Solving for a given final semimajor axis |
|
|
164 | (1) |
|
|
165 | (1) |
|
The distribution of energy perturbations |
|
|
166 | (4) |
|
Energy perturbations for a given MOID |
|
|
170 | (1) |
|
Geocentric variables to characterize meteor orbits |
|
|
170 | (9) |
|
An orbital similarity criterion based on geocentric quantities |
|
|
171 | (4) |
|
Secular invariance of U and θ |
|
|
175 | (2) |
|
|
177 | (2) |
|
Generalized Averaging Principle and Proper Elements for NEAs |
|
|
179 | (34) |
|
Giovanni-Federico Gronchi |
|
|
|
179 | (1) |
|
The classical averaging principle |
|
|
180 | (3) |
|
The full equations of motion |
|
|
180 | (1) |
|
|
181 | (2) |
|
Difficulties arising with crossing orbits |
|
|
183 | (1) |
|
Generalized averaging principle in the circular coplanar case |
|
|
183 | (16) |
|
Geometry of the node crossing |
|
|
183 | (3) |
|
Description of the osculating orbits |
|
|
186 | (1) |
|
|
187 | (1) |
|
|
188 | (2) |
|
|
190 | (1) |
|
|
191 | (3) |
|
Boundedness of the remainder function |
|
|
194 | (2) |
|
The derivatives of the averaged perturbing function R |
|
|
196 | (3) |
|
|
199 | (4) |
|
The secular evolution algorithm |
|
|
201 | (1) |
|
Different dynamical behavior of NEAs |
|
|
202 | (1) |
|
|
203 | (4) |
|
|
207 | (1) |
|
Generalized averaging principle in the eccentric--inclined case |
|
|
208 | (2) |
|
The mutual reference frame |
|
|
209 | (1) |
|
|
210 | (3) |
|
|
210 | (3) |
Subject Index |
|
213 | |