Muutke küpsiste eelistusi

Sliding Mode Control and Observation 2013 ed. [Kõva köide]

  • Formaat: Hardback, 356 pages, kõrgus x laius: 235x155 mm, kaal: 728 g, 168 Illustrations, black and white; XVII, 356 p. 168 illus., 1 Hardback
  • Sari: Control Engineering
  • Ilmumisaeg: 01-Jun-2013
  • Kirjastus: Birkhauser Boston Inc
  • ISBN-10: 0817648925
  • ISBN-13: 9780817648923
Teised raamatud teemal:
  • Kõva köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 356 pages, kõrgus x laius: 235x155 mm, kaal: 728 g, 168 Illustrations, black and white; XVII, 356 p. 168 illus., 1 Hardback
  • Sari: Control Engineering
  • Ilmumisaeg: 01-Jun-2013
  • Kirjastus: Birkhauser Boston Inc
  • ISBN-10: 0817648925
  • ISBN-13: 9780817648923
Teised raamatud teemal:
The sliding mode control methodology has proven effective in dealing with complex dynamical systems affected by disturbances, uncertainties and unmodeled dynamics. Robust control technology based on this methodology has been applied to many real-world problems, especially in the areas of aerospace control, electric power systems, electromechanical systems, and robotics. Sliding Mode Control and Observation represents the first textbook that starts with classical sliding mode control techniques and progresses toward newly developed higher-order sliding mode control and observation algorithms and their applications.



The present volume addresses a range of sliding mode control issues, including:

*Conventional sliding mode controller and observer design

*Second-order sliding mode controllers and differentiators

*Frequency domain analysis of conventional and second-order sliding mode controllers

*Higher-order sliding mode controllers and differentiators

*Higher-order sliding mode observers

*Sliding mode disturbance observer based control

*Numerous applications, including reusable launch vehicle and satellite formation control, blood glucose regulation, and car steering control are used as case studies



Sliding Mode Control and Observation is aimed at graduate students with a basic knowledge of classical control theory and some knowledge of state-space methods and nonlinear systems, while being of interest to a wider audience of graduate students in electrical/mechanical/aerospace engineering and applied mathematics, as well as researchers in electrical, computer, chemical, civil, mechanical, aeronautical, and industrial engineering, applied mathematicians, control engineers, and physicists. Sliding Mode Control and Observation provides the necessary tools for graduate students, researchers and engineers to robustly control complex and uncertain nonlinear dynamical systems. Exercises provided at the end of each chapter make this an ideal text for an advanced course taught in control theory.

Arvustused

From the book reviews:

This book covers several different topics related to sliding mode control and observation. The book succeeds in being reasonably self-contained. A reader, such as a graduate student will find most of the book very accessible. Also, as a collection of recent results and applications, the book is a valuable reference for researchers and engineers in the field of robust control of complex and uncertain nonlinear dynamical systems. (Elisabetta Punta, Mathematical Reviews, August, 2014)

1 Introduction: Intuitive Theory of Sliding Mode Control
1(42)
1.1 Main Concepts of Sliding Mode Control
3(6)
1.2 Chattering Avoidance: Attenuation and Elimination
9(8)
1.2.1 Chattering Elimination: Quasi-Sliding Mode
9(2)
1.2.2 Chattering Attenuation: Asymptotic Sliding Mode
11(6)
1.3 Concept of Equivalent Control
17(1)
1.4 Sliding Mode Equations
18(1)
1.5 The Matching Condition and Insensitivity Properties
19(1)
1.6 Sliding Mode Observer/Differentiator
20(3)
1.7 Second-Order Sliding Mode
23(4)
1.8 Output Tracking: Relative Degree Approach
27(13)
1.8.1 Conventional Sliding Mode Controller Design
28(2)
1.8.2 Integral Sliding Mode Controller Design
30(3)
1.8.3 Super-Twisting Controller Design
33(3)
1.8.4 Prescribed Convergence Law Controller Design
36(4)
1.9 Notes and References
40(1)
1.10 Exercises
41(2)
2 Conventional Sliding Modes
43(62)
2.1 Introduction
43(7)
2.1.1 Filippov Solution
44(3)
2.1.2 Concept of Equivalent Control
47(3)
2.2 State-Feedback Sliding Surface Design
50(11)
2.2.1 Regular Form
53(2)
2.2.2 Eigenvalue Placement
55(3)
2.2.3 Quadratic Minimization
58(3)
2.3 State-Feedback Relay Control Law Design
61(7)
2.3.1 Single-Input Nominal Systems
61(1)
2.3.2 Single-Input Perturbed Systems
62(5)
2.3.3 Relay Control for Multi-input Systems
67(1)
2.4 State-Feedback Unit-Vector Control
68(7)
2.4.1 Design in the Presence of Matched Uncertainty
68(3)
2.4.2 Design in the Presence of Unmatched Uncertainty
71(4)
2.5 Output Tracking with Integral Action
75(2)
2.6 Output-Based Hyperplane Design
77(12)
2.6.1 Static Output-Feedback Hyperplane Design
78(5)
2.6.2 Static Output-Feedback Control Law Development
83(2)
2.6.3 Dynamic Output-Feedback Hyperplane Design
85(2)
2.6.4 Dynamic Output-Feedback Control Law Development
87(1)
2.6.5 Case Study: Vehicle Stability in a Split-Mu Maneuver
88(1)
2.7 Integral Sliding Mode Control
89(7)
2.7.1 Problem Formulation
90(1)
2.7.2 Control Design Objective
91(1)
2.7.3 Linear Case
91(3)
2.7.4 ISM Compensation of Unmatched Disturbances
94(2)
2.8 Notes and References
96(3)
2.9 Exercises
99(6)
3 Conventional Sliding Mode Observers
105(38)
3.1 Introduction
105(1)
3.2 A Simple Sliding Mode Observer
106(5)
3.3 Robustness Properties of Sliding Mode Observers
111(10)
3.4 A Generic Conventional Sliding Mode Observer
121(7)
3.5 A Sliding Mode Observer for Nonlinear Systems
128(5)
3.6 Fault Detection: A Simulation Example
133(3)
3.7 Notes and References
136(1)
3.8 Exercises
137(6)
4 Second-Order Sliding Mode Controllers and Differentiators
143(40)
4.1 Introduction
143(4)
4.2 2-Sliding Mode Controllers
147(8)
4.2.1 Twisting Controller
148(3)
4.2.2 Suboptimal Algorithm
151(1)
4.2.3 Control Algorithm with Prescribed Convergence Law
152(1)
4.2.4 Quasi-Continuous Control Algorithm
153(2)
4.2.5 Accuracy of 2-Sliding Mode Controllers
155(1)
4.3 Control of Relative Degree One Systems
155(6)
4.3.1 Super-Twisting Controller
155(4)
4.3.2 First-Order Differentiator
159(2)
4.4 Differentiator-Based Output-Feedback 2-SM Control
161(2)
4.5 Chattering Attenuation
163(3)
4.6 Case Study: Pendulum Control
166(4)
4.6.1 Discontinuous Control
167(2)
4.6.2 Chattering Attenuation
169(1)
4.7 Variable-Gain Super-Twisting Control
170(6)
4.7.1 Problem Statement
171(1)
4.7.2 The Variable-Gain Super-Twisting Algorithm
172(4)
4.8 Case Study: The Mass-Spring-Damper System
176(3)
4.8.1 Model Description
176(1)
4.8.2 Problem Statement
177(1)
4.8.3 Control Design
178(1)
4.8.4 Experimental Results
179(1)
4.9 Notes and References
179(3)
4.10 Exercises
182(1)
5 Analysis of Sliding Mode Controllers in the Frequency Domain
183(30)
5.1 Introduction
183(1)
5.2 Conventional SMC Algorithm: DF Analysis
184(9)
5.3 Twisting Algorithm: DF Analysis
193(3)
5.4 Super-Twisting Algorithm: DF Analysis
196(5)
5.4.1 DF of Super-Twisting Algorithm
196(2)
5.4.2 Existence of the Periodic Solutions
198(2)
5.4.3 Stability of Periodic Solution
200(1)
5.5 Prescribed Convergence Control Law: DF Analysis
201(2)
5.6 Suboptimal Algorithm: DF Analysis
203(2)
5.7 Comparisons of 2-Sliding Mode Control Algorithms
205(3)
5.8 Notes and References
208(1)
5.9 Exercises
208(5)
6 Higher-Order Sliding Mode Controllers and Differentiators
213(38)
6.1 Introduction
214(2)
6.2 Single-Input Single-Output Regulation Problem
216(1)
6.3 Homogeneity, Finite-Time Stability, and Accuracy
217(5)
6.4 Homogeneous Sliding Modes
222(1)
6.5 Accuracy of Homogeneous 2-Sliding Modes
223(2)
6.6 Arbitrary-Order Sliding Mode Controllers
225(3)
6.6.1 Nested Sliding Controllers
225(2)
6.6.2 Quasi-continuous Sliding Controllers
227(1)
6.7 Arbitrary-Order Robust Exact Differentiation
228(2)
6.8 Output-Feedback Control
230(3)
6.9 Tuning of the Controllers
233(1)
6.9.1 Control Magnitude Tuning
233(1)
6.9.2 Parametric Tuning
233(1)
6.10 Case Study: Car Steering Control
234(3)
6.11 Case Study: Blood Glucose Regulation
237(10)
6.11.1 Introduction to Diabetes
237(3)
6.11.2 Insulin-Glucose Regulation Dynamical Model
240(1)
6.11.3 Higher-Order Sliding Mode Controller Design
241(3)
6.11.4 Simulation
244(3)
6.12 Notes and References
247(1)
6.13 Exercises
248(3)
7 Observation and Identification via HOSM Observers
251(40)
7.1 Observation/Identification of Mechanical Systems
252(13)
7.1.1 Super-Twisting Observer
253(2)
7.1.2 Equivalent Output Injection Analysis
255(4)
7.1.3 Parameter Identification
259(6)
7.2 Observation in Single-Output Linear Systems
265(9)
7.2.1 Non-perturbed Case
265(1)
7.2.2 Perturbed Case
266(2)
7.2.3 Design of the Observer for Strongly Observable Systems
268(6)
7.3 Observers for Single-Output Nonlinear Systems
274(6)
7.3.1 Differentiator-Based Observer
275(3)
7.3.2 Disturbance Identification
278(2)
7.4 Regulation and Tracking Controllers Driven by SM Observers
280(6)
7.4.1 Motivation
280(1)
7.4.2 Problem Statement
281(1)
7.4.3 Theoretically Exact Output-Feedback Stabilization (EOFS)
282(1)
7.4.4 Output Integral Sliding Mode Control
283(1)
7.4.5 Precision of the Observation and Identification Processes
284(2)
7.5 Notes and References
286(1)
7.6 Exercises
286(5)
8 Disturbance Observer Based Control: Aerospace Applications
291(30)
8.1 Problem Formulation
291(4)
8.1.1 Asymptotic Compensated Dynamics
292(1)
8.1.2 Finite-Time-Convergent Compensated Dynamics
293(1)
8.1.3 Sliding Variable Disturbed Dynamics
294(1)
8.1.4 Output Tracking Error Disturbed Dynamics
294(1)
8.2 Perturbation Term Reconstruction via a Disturbance Observer
295(3)
8.2.1 SMDO Based on Conventional SMC
295(1)
8.2.2 SMDO Based on Super-Twisting Control
296(1)
8.2.3 Design of the SMC Driven by the SMDO
297(1)
8.3 Case Study: Reusable Launch Vehicle Control
298(11)
8.3.1 Mathematical Model of Reusable Launch Vehicle
298(2)
8.3.2 Reusable Launch Vehicle Control Problem Formulation
300(1)
8.3.3 Multiple-Loop Asymptotic SMC/SMDO Design
301(4)
8.3.4 Flight Simulation Results and Analysis
305(4)
8.4 Case Study: Satellite Formation Control
309(5)
8.4.1 Satellite Formation Mathematical Model
310(3)
8.4.2 Satellite Formation Control in SMC/SMDO
313(1)
8.5 Simulation Study
314(2)
8.6 Notes and References
316(2)
8.7 Exercises
318(3)
A Mathematical Preliminaries
321(6)
A.1 Linear Algebra
321(6)
A.1.1 Rank and Determinant
321(1)
A.1.2 Eigenvalues and Eigenvectors
322(1)
A.1.3 QR Decomposition
323(1)
A.1.4 Norms
323(1)
A.1.5 Quadratic Forms
324(3)
B Describing Functions
327(4)
B.1 Describing Function Fundamentals
327(4)
B.1.1 Low-Pass Filter Hypothesis and Describing Function
328(1)
B.1.2 Limit Cycle Analysis Using Describing Functions
328(1)
B.1.3 Stability Analysis of the Limit Cycle
329(2)
C Linear Systems Theory
331(6)
C.1 Introduction
331(6)
C.1.1 Linear Time-Invariant Systems
331(1)
C.1.2 Controllability and Observability
332(1)
C.1.3 Invariant Zeros
333(1)
C.1.4 State Feedback Control
334(1)
C.1.5 Static Output Feedback Control
335(2)
D Lyapunov Stability
337(6)
D.1 Local Results
338(1)
D.2 Global Results
338(5)
D.2.1 Quadratic Stability
339(4)
Bibliography 343(10)
Index 353