1 Electron Sources |
|
1 | (16) |
|
1.1 Introduction and Definitions of Parameters |
|
|
2 | (2) |
|
|
4 | (4) |
|
|
4 | (2) |
|
1.2.2 Coulomb Interactions |
|
|
6 | (1) |
|
|
7 | (1) |
|
1.3 Field Emission Sources |
|
|
8 | (2) |
|
|
8 | (2) |
|
|
10 | (1) |
|
1.4 Photo-Emission Sources |
|
|
10 | (1) |
|
1.5 Effect of the Electron Source Parameters on Resolution in STEM |
|
|
11 | (3) |
|
1.5.1 Contributions to the Probe Size |
|
|
11 | (1) |
|
|
12 | (2) |
|
|
14 | (1) |
|
|
15 | (2) |
2 In situ and Operando |
|
17 | (64) |
|
|
18 | (1) |
|
|
18 | (1) |
|
|
19 | (3) |
|
2.3.1 Post-Mortem Characterization |
|
|
20 | (1) |
|
|
20 | (2) |
|
|
22 | (7) |
|
|
22 | (1) |
|
|
22 | (1) |
|
2.4.3 Direct-Detection Cameras |
|
|
22 | (1) |
|
2.4.4 Software and Data Handling |
|
|
23 | (1) |
|
|
24 | (1) |
|
2.4.6 Ultrafast Electron Microscopy |
|
|
25 | (4) |
|
|
29 | (12) |
|
|
36 | (1) |
|
2.5.2 Working in a Gas Cell |
|
|
37 | (2) |
|
2.5.3 Working in a Liquid Cell |
|
|
39 | (2) |
|
|
41 | (7) |
|
2.6.1 Temperature Measurement |
|
|
41 | (1) |
|
|
42 | (4) |
|
|
46 | (2) |
|
|
48 | (19) |
|
|
48 | (7) |
|
|
55 | (1) |
|
|
56 | (8) |
|
|
64 | (3) |
|
2.8 Adding or Removing Material |
|
|
67 | (6) |
|
2.8.1 Depositing Layers/Particles |
|
|
67 | (1) |
|
2.8.2 Deposition Energy: Electron and Ion Irradiation |
|
|
68 | (5) |
|
|
73 | (2) |
|
|
75 | (1) |
|
|
76 | (5) |
3 Electron Diffraction and Phase Identification |
|
81 | (22) |
|
|
82 | (1) |
|
|
83 | (2) |
|
3.2.1 Example: Ordered FeBe Phases and A2 Matrix |
|
|
83 | (2) |
|
3.3 Superalloys with Ordered Precipitates |
|
|
85 | (8) |
|
3.3.1 Example: γ'' and γ' Precipitation in Alloy 718 |
|
|
87 | (2) |
|
3.3.2 Example: D0a-Ordered δ Precipitation in Alloy 718 |
|
|
89 | (4) |
|
3.4 Carbide Precipitation in fcc Alloys |
|
|
93 | (3) |
|
3.4.1 Example: M23C6 Precipitation in a Ni—Base Alloy |
|
|
93 | (1) |
|
3.4.2 Example: MC Carbides in a Ni—Base Alloy |
|
|
94 | (2) |
|
|
96 | (3) |
|
3.5.1 Relationships Between Austenite and Ferrite, Austenite and Martensite (fcc/bcc) |
|
|
96 | (1) |
|
3.5.2 Relationship Between Cementite (Orthorhombic Fe3C or M3C) and Ferrite/Tempered Martensite |
|
|
97 | (1) |
|
3.5.3 Relationships Between Alloy Carbides and Ferrite |
|
|
97 | (1) |
|
3.5.4 Precipitation in Ferritic Structures |
|
|
98 | (1) |
|
3.6 Epitaxial Oxide on Metal: Presence of Fe3O4 on Steel Foils |
|
|
99 | (2) |
|
|
101 | (1) |
|
|
102 | (1) |
4 Convergent-Beam Electron Diffraction: Symmetry and Large-Angle Patterns |
|
103 | (42) |
|
|
104 | (1) |
|
4.2 Point-Group Determination |
|
|
104 | (5) |
|
4.3 Space-Group Determination |
|
|
109 | (5) |
|
4.3.1 Forbidden Reflections |
|
|
109 | (2) |
|
|
111 | (2) |
|
4.3.3 Complete Procedure for Space-Group Determination |
|
|
113 | (1) |
|
4.4 Ni3Mo — A Worked Example |
|
|
114 | (6) |
|
4.4.1 Ni3Mo — a Worked Example, Part I: Point Group |
|
|
114 | (4) |
|
|
118 | (1) |
|
4.4.3 Ni3Mo — a Worked Example, Part II: Space Group |
|
|
119 | (1) |
|
4.5 Additional and Alternative Symmetry Methods |
|
|
120 | (3) |
|
4.5.1 Symmetry Determination from Off-Axis Patterns |
|
|
120 | (2) |
|
4.5.2 Symmetry from Precession Patterns |
|
|
122 | (1) |
|
|
123 | (1) |
|
4.6.1 GM Lines in HOLZ Reflections |
|
|
124 | (1) |
|
4.6.2 Glide Planes Normal to the Beam |
|
|
124 | (1) |
|
|
124 | (3) |
|
4.7.1 Enantiomorphous Pairs: Handedness |
|
|
126 | (1) |
|
|
126 | (1) |
|
4.7.3 Coherent Convergent-Beam Diffraction |
|
|
127 | (1) |
|
|
127 | (1) |
|
|
127 | (5) |
|
4.9.1 The Nature of LACBED Patterns |
|
|
129 | (1) |
|
4.9.2 Obtaining LACBED Patterns in Practice |
|
|
130 | (1) |
|
4.9.3 Choosing the Parameters |
|
|
131 | (1) |
|
4.10 Spherical Aberration and LACBED |
|
|
132 | (1) |
|
4.11 Crystal Defects in LACBED Patterns: Dislocations |
|
|
132 | (2) |
|
4.12 Crystal Defects in LACBED Patterns: Stacking Faults and Antiphase Boundaries |
|
|
134 | (1) |
|
4.13 Other Tanaka Methods |
|
|
134 | (7) |
|
4.13.1 Bright- and Dark-Field LACBED |
|
|
134 | (2) |
|
4.13.2 Convergent-Beam Imaging (CBIM) |
|
|
136 | (1) |
|
4.13.3 Rastering Techniques |
|
|
137 | (4) |
|
|
141 | (1) |
|
|
142 | (3) |
5 Electron Crystallography, Charge-Density Mapping, and Nanodiffraction |
|
145 | (22) |
|
5.1 Can We Quantify Electron Diffraction Data, |
|
|
146 | (1) |
|
5.2 Quantitative CBED for Charge-Density Mapping |
|
|
147 | (6) |
|
5.3 Strain Mapping, High Voltage, Lattice Parameters Measured by QCBED |
|
|
153 | (2) |
|
5.4 Spot Patterns — Solving Crystal Structures |
|
|
155 | (2) |
|
5.5 The Precession Method |
|
|
157 | (1) |
|
5.6 Diffuse Scattering, Defects, Phonons, and Phase Transitions |
|
|
158 | (1) |
|
5.7 Diffractive Imaging, Ptychography, STEM Holography, Ronchigrams, and All That |
|
|
159 | (3) |
|
5.8 Equipment for Quantitative Electron Diffraction |
|
|
162 | (1) |
|
|
163 | (1) |
|
|
164 | (3) |
6 Digital-Micrograph |
|
167 | (30) |
|
|
168 | (2) |
|
6.1.1 What Is DigitalMicrograph, |
|
|
168 | (1) |
|
6.1.2 Installing DigitalMicrograph Offline |
|
|
168 | (1) |
|
6.1.3 A (Very) Quick Overview |
|
|
168 | (2) |
|
|
170 | (13) |
|
|
170 | (1) |
|
|
171 | (2) |
|
|
173 | (5) |
|
6.2.4 Image Calibration and Image Tags |
|
|
178 | (2) |
|
|
180 | (1) |
|
6.2.6 Extracting Subsets of Data |
|
|
181 | (2) |
|
6.3 Digital Image Processing |
|
|
183 | (10) |
|
|
185 | (2) |
|
6.3.2 Fourier Transformation in Images |
|
|
187 | (2) |
|
|
189 | (3) |
|
6.3.4 Coordinate Transformations |
|
|
192 | (1) |
|
6.4 Scripting and Plugins |
|
|
193 | (2) |
|
|
195 | (1) |
|
|
195 | (2) |
7 Electron Waves, Interference, and Coherence |
|
197 | (18) |
|
|
198 | (1) |
|
|
198 | (2) |
|
|
199 | (1) |
|
|
199 | (1) |
|
|
199 | (1) |
|
|
200 | (1) |
|
7.4 Modulation of a Wave by an Object |
|
|
201 | (1) |
|
|
201 | (2) |
|
7.5.1 Fresnel Approximation in the Near-Field of the Object |
|
|
202 | (1) |
|
7.5.2 Fraunhofer Approximation in the Far-Field of the Object |
|
|
202 | (1) |
|
7.6 Imaging: Formation of the Image Wave |
|
|
203 | (1) |
|
7.6.1 Fourier Transform of the Object Exit Wave |
|
|
203 | (1) |
|
7.6.2 Building the Image Wave by Inverse Fourier Transform of the Fourier Spectrum |
|
|
203 | (1) |
|
7.7 Electron Wave Function |
|
|
204 | (1) |
|
7.8 Electron Interference |
|
|
205 | (1) |
|
|
206 | (1) |
|
|
207 | (1) |
|
|
207 | (6) |
|
|
208 | (2) |
|
|
210 | (1) |
|
7.11.3 Temporal Coherence |
|
|
211 | (1) |
|
7.11.4 Total Degree of Coherence |
|
|
211 | (1) |
|
|
211 | (1) |
|
7.11.6 Coherence at Inelastic Interaction |
|
|
211 | (2) |
|
|
213 | (1) |
|
|
213 | (2) |
8 Electron Holography |
|
215 | (18) |
|
8.1 Big Problem with TEM: Phase Contrast |
|
|
216 | (1) |
|
8.2 Wave Modulation and Conventional Imaging |
|
|
216 | (3) |
|
8.2.1 Amplitude Modulation |
|
|
216 | (1) |
|
|
217 | (1) |
|
8.2.3 What Do We See in an Electron Image? |
|
|
218 | (1) |
|
8.3 Principle of Image-Plane Off-Axis Holography |
|
|
219 | (4) |
|
8.3.1 Recording a Hologram |
|
|
219 | (1) |
|
8.3.2 Reconstructing the Object Exit-Wave |
|
|
220 | (3) |
|
8.3.3 What Have We Achieved so Far? |
|
|
223 | (1) |
|
8.4 Properties of the Reconstructed Object Exit-Wave |
|
|
223 | (1) |
|
8.5 Requirements of Holography |
|
|
224 | (1) |
|
|
224 | (1) |
|
8.7 Application to Electric Potentials on Nanometer Scale |
|
|
225 | (2) |
|
8.7.1 Phase Shift Due to Electrostatic Potentials |
|
|
225 | (1) |
|
8.7.2 Experimental Considerations |
|
|
226 | (1) |
|
8.7.3 Application Example: p—n Junctions |
|
|
227 | (1) |
|
8.8 Further Derivatives of Electron Holography |
|
|
227 | (3) |
|
8.8.1 Holographic Tomography |
|
|
227 | (1) |
|
8.8.2 Dark-Field Holography |
|
|
228 | (2) |
|
|
230 | (1) |
|
|
230 | (3) |
9 Focal-Series Reconstruction |
|
233 | (34) |
|
9.1 Motivation: Why the Effort? |
|
|
234 | (1) |
|
9.2 Quick Walk Through Electron Diffraction |
|
|
235 | (2) |
|
9.3 From the Wavefunction to the Image |
|
|
237 | (12) |
|
9.3.1 Imaging with a 'Neutral' Microscope |
|
|
238 | (2) |
|
9.3.2 Linear Imaging with a Constant-Phase-Shift Microscope |
|
|
240 | (1) |
|
9.3.3 Linear Imaging with a Real Microscope |
|
|
241 | (6) |
|
9.3.4 From Oscillations to Windings: an Integral View on Linear Imaging |
|
|
247 | (2) |
|
9.4 From the Images to the Wavefunction |
|
|
249 | (8) |
|
9.4.1 Tomographic Interpretation of Focal Series |
|
|
249 | (1) |
|
9.4.2 Fundamental Properties of Focal Series |
|
|
250 | (3) |
|
9.4.3 An Explicit Solution to the Linear Inversion Problem |
|
|
253 | (2) |
|
9.4.4 Nonlinear Reconstruction |
|
|
255 | (1) |
|
9.4.5 Numerical Correction of Residual Aberrations |
|
|
256 | (1) |
|
|
257 | (6) |
|
9.5.1 Twin Boundaries in BaTiO3 |
|
|
258 | (2) |
|
9.5.2 Stacking Fault in GaAs |
|
|
260 | (3) |
|
|
263 | (1) |
|
|
264 | (3) |
10 Direct Methods for Image Interpretation |
|
267 | (16) |
|
|
268 | (1) |
|
10.2 Basics of Image Formation |
|
|
268 | (3) |
|
|
268 | (1) |
|
10.2.2 Successive Imaging Steps |
|
|
269 | (1) |
|
|
269 | (1) |
|
10.2.4 High-Resolution Imaging in the TEM |
|
|
270 | (1) |
|
10.3 Focal-Series Reconstruction of the Exit Wave |
|
|
271 | (1) |
|
10.4 Interpretation of the Reconstructed Exit Wave |
|
|
271 | (3) |
|
10.4.1 Electron Channeling |
|
|
272 | (1) |
|
|
273 | (1) |
|
10.5 Quantitative Structure Refinement |
|
|
274 | (6) |
|
10.5.1 Precision Versus Resolution |
|
|
276 | (1) |
|
10.5.2 Quantitative Model-Based Structure Determination |
|
|
276 | (4) |
|
|
280 | (1) |
|
|
280 | (3) |
11 Imaging in STEM |
|
283 | (60) |
|
11.1 Z-Contrast STEM: an Introduction |
|
|
284 | (4) |
|
11.1.1 Independent Scatterers |
|
|
284 | (1) |
|
11.1.2 An Array of Scatterers |
|
|
284 | (1) |
|
11.1.3 As the Crystal Thickens |
|
|
284 | (2) |
|
11.1.4 Inside and Outside |
|
|
286 | (1) |
|
11.1.5 The Effect of Defects |
|
|
287 | (1) |
|
|
288 | (1) |
|
11.2 An Electron's Eye View of STEM |
|
|
288 | (5) |
|
11.2.1 Plane Waves and Probes |
|
|
291 | (1) |
|
11.2.2 Rayleigh, Airy and Resolution |
|
|
292 | (1) |
|
11.3 Lens Aberrations for STEM |
|
|
293 | (12) |
|
11.3.1 The Benefits of Aberration Correction |
|
|
295 | (5) |
|
11.3.2 Resolution in the Third Dimension — Depth Resolution |
|
|
300 | (5) |
|
11.4 Spatial and Temporal Incoherence |
|
|
305 | (5) |
|
11.4.1 Spatial Incoherence |
|
|
305 | (1) |
|
11.4.2 Temporal Incoherence |
|
|
306 | (1) |
|
11.4.3 "How Do I Know if I Have a Coherent Probe?" The Ronchigram |
|
|
306 | (4) |
|
11.5 Coherent or Incoherent Imaging |
|
|
310 | (13) |
|
11.5.1 A Point Detector; Coherent Imaging |
|
|
311 | (1) |
|
11.5.2 An Infinite Detector: Incoherent Imaging |
|
|
312 | (2) |
|
11.5.3 An Annular Detector: Incoherent Dark-Field or Bright-Field Imaging |
|
|
314 | (1) |
|
11.5.4 Atoms Are Smaller in HAADF STEM |
|
|
315 | (1) |
|
11.5.5 Transverse Coherence |
|
|
316 | (1) |
|
11.5.6 The Origin of Contrast in the Scanned Image |
|
|
317 | (1) |
|
11.5.7 Transfer Function and Damping Function |
|
|
318 | (1) |
|
11.5.8 Longitudinal Coherence |
|
|
319 | (4) |
|
11.6 Dynamical Diffraction |
|
|
323 | (3) |
|
11.7 Other Sources of Image Contrast |
|
|
326 | (3) |
|
|
329 | (3) |
|
|
332 | (3) |
|
|
333 | (1) |
|
|
333 | (1) |
|
11.9.3 Bloch Waves with Absorption |
|
|
333 | (1) |
|
11.9.4 There Is No Stobb's Factor in HAADF |
|
|
334 | (1) |
|
|
335 | (2) |
|
|
337 | (1) |
|
|
338 | (5) |
12 Electron Tomography |
|
343 | (34) |
|
12.1 Theory of Projection |
|
|
344 | (2) |
|
|
346 | (1) |
|
12.3 Constrained Reconstruction |
|
|
347 | (3) |
|
12.3.1 Constraint by Projection Consistency |
|
|
347 | (1) |
|
12.3.2 Constraint by Discrete Methods |
|
|
348 | (1) |
|
12.3.3 Constraint by Symmetry |
|
|
348 | (1) |
|
12.3.4 Metric-Based Constraint |
|
|
348 | (2) |
|
12.4 Other Reconstruction Approaches |
|
|
350 | (1) |
|
12.5 Meeting the Projection Requirement |
|
|
350 | (1) |
|
|
351 | (3) |
|
12.7 Element-Selected Tomography |
|
|
354 | (2) |
|
12.8 Dark-Field TEM Tomography |
|
|
356 | (2) |
|
12.9 Holographic Tomography |
|
|
358 | (1) |
|
12.10 Atomistic Tomography |
|
|
359 | (1) |
|
12.11 Experimental Limitations |
|
|
360 | (4) |
|
12.12 Beam Damage and Contamination |
|
|
364 | (1) |
|
12.13 Automated Acquisition |
|
|
365 | (1) |
|
12.14 Tilt-Series Alignment |
|
|
366 | (2) |
|
12.15 Visualization of Three-Dimensional Datasets |
|
|
368 | (1) |
|
|
369 | (2) |
|
12.17 Quantitative Analysis of Volumetric Data |
|
|
371 | (2) |
|
|
373 | (1) |
|
|
373 | (4) |
13 EFTEM |
|
377 | (28) |
|
|
378 | (1) |
|
|
378 | (1) |
|
13.3 Instrumentation for EFTEM |
|
|
379 | (2) |
|
13.3.1 General TEM Considerations |
|
|
379 | (1) |
|
13.3.2 The Imaging Filter |
|
|
379 | (1) |
|
13.3.3 Detector Considerations |
|
|
380 | (1) |
|
13.4 Limitations and Artefacts |
|
|
381 | (4) |
|
13.4.1 Spatial Resolution in EFTEM Images |
|
|
381 | (2) |
|
13.4.2 Non-Isochromaticity |
|
|
383 | (1) |
|
|
383 | (1) |
|
13.4.4 Diffraction Contrast |
|
|
384 | (1) |
|
13.4.5 Illumination Convergence |
|
|
384 | (1) |
|
13.5 Application of EFTEM |
|
|
385 | (2) |
|
13.5.1 Zero-Loss Imaging and Diffraction |
|
|
385 | (1) |
|
13.5.2 Measuring Relative Thickness (t/A Mapping) |
|
|
386 | (1) |
|
13.6 Core-Loss Elemental Mapping |
|
|
387 | (2) |
|
13.6.1 Elemental Mapping (Three-Window Method) |
|
|
387 | (1) |
|
13.6.2 Jump-Ratio Mapping (Two-Window Method) |
|
|
388 | (1) |
|
13.7 EFTEM Spectrum-Imaging |
|
|
389 | (3) |
|
|
392 | (1) |
|
13.9 Alternative Imaging Techniques for Biological Specimens |
|
|
393 | (1) |
|
13.10 Quantitative Elemental Mapping |
|
|
394 | (2) |
|
13.11 Chemical State Mapping Using ELNES |
|
|
396 | (1) |
|
13.12 Hybrid EFTEM Modes (ω-q, Line Spectrum EFTEM) |
|
|
397 | (1) |
|
|
398 | (3) |
|
|
401 | (1) |
|
|
401 | (4) |
14 Calculating EELS |
|
405 | (20) |
|
|
406 | (1) |
|
14.2 Density Functional Theory (DFT) |
|
|
407 | (5) |
|
14.2.1 Introduction to DFT |
|
|
407 | (2) |
|
14.2.2 The Exchange Correlation Potential |
|
|
409 | (1) |
|
14.2.3 Approximations to the Potential |
|
|
409 | (1) |
|
|
410 | (2) |
|
14.2.5 The Korringa—Kohn—Rostoker (KKR) Method |
|
|
412 | (1) |
|
14.3 Calculations of the ELNES |
|
|
412 | (5) |
|
|
412 | (2) |
|
|
414 | (1) |
|
|
415 | (1) |
|
14.3.4 Multiple Scattering (MS) Methods |
|
|
416 | (1) |
|
14.4 Calculating Low-Loss EELS |
|
|
417 | (4) |
|
|
421 | (1) |
|
|
422 | (3) |
15 Diffraction & X-ray Excitation |
|
425 | (14) |
|
|
426 | (1) |
|
|
426 | (1) |
|
|
426 | (2) |
|
|
428 | (3) |
|
15.4.1 Dilute Solution/Partition Coefficient Analysis |
|
|
428 | (2) |
|
15.4.2 Concentrated Solution/OTL Analysis |
|
|
430 | (1) |
|
15.5 Delocalization and Axial Channeling |
|
|
431 | (1) |
|
15.6 Optimizing ALCHEMI: 'Statistical' ALCHEMI |
|
|
432 | (1) |
|
15.7 Incoherent Channeling Patterns |
|
|
432 | (1) |
|
15.8 Vacancies and Interstitials |
|
|
432 | (2) |
|
|
434 | (1) |
|
|
435 | (1) |
|
|
436 | (3) |
16 X-ray and EELS Imaging |
|
439 | (28) |
|
16.1 What Are Spectral Images and Why Should We Collect Them? |
|
|
440 | (1) |
|
|
441 | (1) |
|
16.3 Acquisition and Analysis of Spectral Images |
|
|
442 | (9) |
|
16.3.1 Sampling and the Effect of Probe Versus Pixel Size (STEM-XEDS/EELS) or Magnification (EFTEM) |
|
|
442 | (1) |
|
16.3.2 Signal: Count Rate, Dwell Time, Spectral Image Size, and Acquisition Time |
|
|
443 | (3) |
|
16.3.3 Drift Correction and Beam Damage |
|
|
446 | (1) |
|
16.3.4 Conventional Data Analysis Methods |
|
|
446 | (5) |
|
16.4 Multivariate Statistical Analysis Methods |
|
|
451 | (7) |
|
16.4.1 Principal Components Analysis (PCA) |
|
|
454 | (1) |
|
|
455 | (1) |
|
16.4.3 Multivariate Curve Resolution (MCR) |
|
|
456 | (1) |
|
|
457 | (1) |
|
16.5 Example of X-ray and Electron Energy-Loss Spectral Image Acquisition and Analysis |
|
|
458 | (6) |
|
16.5.1 Fe-Ni Spectral Image Acquisition and Quantification |
|
|
458 | (1) |
|
16.5.2 Mn-Doped SrTiO3 Grain Boundary Spectral Image Acquisition and Quantification |
|
|
459 | (3) |
|
16.5.3 Plasmon Mapping of AG Nanorods: EELS Spectral Image Analysis |
|
|
462 | (2) |
|
|
464 | (1) |
|
|
464 | (3) |
17 Practical Aspects and Advanced Applications of XEDS |
|
467 | (38) |
|
17.1 Performance Parameters of XEDS Detectors |
|
|
468 | (4) |
|
17.1.1 Detector, Fundamental Parameters |
|
|
468 | (2) |
|
17.1.2 Monitoring Detector Contamination |
|
|
470 | (1) |
|
17.1.3 Software to Determine Detector Parameters |
|
|
471 | (1) |
|
17.2 X-ray Spectrum Simulation — a Tutorial and Applications of DTSA |
|
|
472 | (14) |
|
|
473 | (2) |
|
17.2.2 A Brief Tutorial of X-ray Spectrum Simulation for a Thin Specimen Using DTSA |
|
|
475 | (2) |
|
17.2.3 Details of X-ray Simulation in DTSA |
|
|
477 | (4) |
|
17.2.4 Application 1: Confirmation of Peak Overlap |
|
|
481 | (1) |
|
17.2.5 Application 2: Evaluation of X-ray Absorption into a Thin Specimen |
|
|
482 | (1) |
|
17.2.6 Application 3: Evaluation of the AEM-XEDS Interface |
|
|
483 | (1) |
|
17.2.7 Application 4: Estimation of the Detectability Limits |
|
|
483 | (3) |
|
17.3 The ζ-factor Method: a New Approach for Quantitative X-ray Analysis of Thin Specimens |
|
|
486 | (6) |
|
17.3.1 Why Bother with Quantification? |
|
|
486 | (1) |
|
17.3.2 What Is the ζ-factor? |
|
|
487 | (1) |
|
17.3.3 Quantification Procedure in the ζ-factor Method |
|
|
488 | (1) |
|
17.3.4 Determination of ζ factors |
|
|
489 | (1) |
|
17.3.5 Applications of ζ-factor Method |
|
|
490 | (2) |
|
17.4 Contemporary Applications of X-ray Analysis |
|
|
492 | (8) |
|
17.4.1 Renaissance of X-ray Analysis |
|
|
493 | (1) |
|
17.4.2 XEDS Tomography for 3D Elemental Distribution |
|
|
494 | (1) |
|
17.4.3 Atomic Resolution X-ray Mapping |
|
|
495 | (5) |
|
|
500 | (1) |
|
|
501 | (4) |
Figure and Table Credits |
|
505 | (10) |
Index |
|
515 | |