Muutke küpsiste eelistusi

E-raamat: Transmission Electron Microscopy: Diffraction, Imaging, and Spectrometry

Edited by , Edited by
  • Formaat: PDF+DRM
  • Ilmumisaeg: 24-Aug-2016
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319266510
  • Formaat - PDF+DRM
  • Hind: 86,44 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 24-Aug-2016
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319266510

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This text is a companion volume to Transmission Electron Microscopy: A Textbook for Materials Science by Williams and Carter. The aim is to extend the discussion of certain topics that are either rapidly changing at this time or that would benefit from more detailed discussion than space allowed in the primary text. World-renowned researchers have contributed chapters in their area of expertise, and the editors have carefully prepared these chapters to provide a uniform tone and treatment for this exciting material. The book features an unparalleled collection of color figures showcasing the quality and variety of chemical data that can be obtained from today"s instruments, as well as key pitfalls to avoid. As with the previous TEM text, each chapter contains two sets of questions, one for self assessment and a second more suitable for homework assignments. Throughout the book, the style follows that of Williams & Carter even when the subject matter becomes challenging-the aim is

always to make the topic understandable by first-year graduate students and others who are working in the field of Materials ScienceTopics covered include sources, in-situ experiments, electron diffraction, Digital Micrograph, waves and holography, focal-series reconstruction and direct methods, STEM and tomography, energy-filtered TEM (EFTEM) imaging, and spectrum imaging. The range and depth of material makes this companion volume essential reading for the budding microscopist and a key reference for practicing researchers using these and related techniques.

Foreword by Sir John Meurig Thomas.- 1. Electron Sources.- 2. In Situ and Operando.- 3. Electron Diffraction and Phase Identification.- 4. Convergent-Beam Diffraction: Symmetry and Large-Angle Patterns.- 5. Electron crystallography, charge-density mapping and nanodiffraction.- 6. Digital Micrograph.- 7. Electron waves, interference & coherence.- 8. Electron Holography.- 9. Focal-Series Reconstruction.- 10. Direct Methods For Image Interpretation.- 11. Imaging in the STEM.- 12. Electron Tomography.- 13. Energy-Filtered Transmission Electron Microscopy.- 14. Calculation of Electron Energy-Loss Spectra.- 15. Electron Diffraction & X-Ray Excitation.- 16. X-Ray and Electron Energy-Loss Spectral Imaging.- 17. Practical Aspects and Advanced Applications of XEDS.

Arvustused

I would highly recommend this companion volume for researchers and students of the materials and applied sciences; in fact, anybody using transmission electron microscopy in their research will extract many practical ideas . Because of the high quality of the photographic images, composite illustrations, and text presentations, I suggest that this book has a place on the shelf of any electron microscopy laboratory. The editors have put together a wonderful review volume that is well worth the read. (David C. Bell, Microscopy and Microanalysis, Vol. 24 (03), June, 2018)

Transmission Electron Microscopy, a Textbook for Materials Science, first published in 1996 with a second edition in 2009, is a comprehensive book on the subject, with a quite original approach. The book was carefully designed for teaching purposes and its phenomenal success shows that this was time well spent. (Peter Hawkes, Journal of Materials Science, Vol. 52, 2017)

1 Electron Sources 1(16)
1.1 Introduction and Definitions of Parameters
2(2)
1.2 Schottky Sources
4(4)
1.2.1 Emission Theory
4(2)
1.2.2 Coulomb Interactions
6(1)
1.2.3 Practical Aspects
7(1)
1.3 Field Emission Sources
8(2)
1.3.1 Emission Theory
8(2)
1.3.2 Practical Aspects
10(1)
1.4 Photo-Emission Sources
10(1)
1.5 Effect of the Electron Source Parameters on Resolution in STEM
11(3)
1.5.1 Contributions to the Probe Size
11(1)
1.5.2 Current in a Probe
12(2)
Appendix
14(1)
References
15(2)
2 In situ and Operando 17(64)
2.1 General Principles
18(1)
2.2 Some history
18(1)
2.3 The Possibilities
19(3)
2.3.1 Post-Mortem Characterization
20(1)
2.3.2 Statistics
20(2)
2.4 Time
22(7)
2.4.1 Recording the Data
22(1)
2.4.2 The CCD Camera
22(1)
2.4.3 Direct-Detection Cameras
22(1)
2.4.4 Software and Data Handling
23(1)
2.4.5 Drift Correction
24(1)
2.4.6 Ultrafast Electron Microscopy
25(4)
2.5 The Environment
29(12)
2.5.1 Ultrahigh Vacuum
36(1)
2.5.2 Working in a Gas Cell
37(2)
2.5.3 Working in a Liquid Cell
39(2)
2.6 The Temperature
41(7)
2.6.1 Temperature Measurement
41(1)
2.6.2 Heating
42(4)
2.6.3 Cooling
46(2)
2.7 Other Stimuli
48(19)
2.7.1 Deformation
48(7)
2.7.2 Magnetic Fields
55(1)
2.7.3 Electric Fields
56(8)
2.7.4 Photons
64(3)
2.8 Adding or Removing Material
67(6)
2.8.1 Depositing Layers/Particles
67(1)
2.8.2 Deposition Energy: Electron and Ion Irradiation
68(5)
2.9 The Future
73(2)
Appendix
75(1)
References
76(5)
3 Electron Diffraction and Phase Identification 81(22)
3.1 Introduction
82(1)
3.2 Spinodal Alloys
83(2)
3.2.1 Example: Ordered FeBe Phases and A2 Matrix
83(2)
3.3 Superalloys with Ordered Precipitates
85(8)
3.3.1 Example: γ'' and γ' Precipitation in Alloy 718
87(2)
3.3.2 Example: D0a-Ordered δ Precipitation in Alloy 718
89(4)
3.4 Carbide Precipitation in fcc Alloys
93(3)
3.4.1 Example: M23C6 Precipitation in a Ni—Base Alloy
93(1)
3.4.2 Example: MC Carbides in a Ni—Base Alloy
94(2)
3.5 Ferritic Steels
96(3)
3.5.1 Relationships Between Austenite and Ferrite, Austenite and Martensite (fcc/bcc)
96(1)
3.5.2 Relationship Between Cementite (Orthorhombic Fe3C or M3C) and Ferrite/Tempered Martensite
97(1)
3.5.3 Relationships Between Alloy Carbides and Ferrite
97(1)
3.5.4 Precipitation in Ferritic Structures
98(1)
3.6 Epitaxial Oxide on Metal: Presence of Fe3O4 on Steel Foils
99(2)
Appendix
101(1)
References
102(1)
4 Convergent-Beam Electron Diffraction: Symmetry and Large-Angle Patterns 103(42)
4.1 Symmetry
104(1)
4.2 Point-Group Determination
104(5)
4.3 Space-Group Determination
109(5)
4.3.1 Forbidden Reflections
109(2)
4.3.2 Black Crosses
111(2)
4.3.3 Complete Procedure for Space-Group Determination
113(1)
4.4 Ni3Mo — A Worked Example
114(6)
4.4.1 Ni3Mo — a Worked Example, Part I: Point Group
114(4)
4.4.2 Qualifications
118(1)
4.4.3 Ni3Mo — a Worked Example, Part II: Space Group
119(1)
4.5 Additional and Alternative Symmetry Methods
120(3)
4.5.1 Symmetry Determination from Off-Axis Patterns
120(2)
4.5.2 Symmetry from Precession Patterns
122(1)
4.6 More on Glide Planes
123(1)
4.6.1 GM Lines in HOLZ Reflections
124(1)
4.6.2 Glide Planes Normal to the Beam
124(1)
4.7 Beyond Symmetry
124(3)
4.7.1 Enantiomorphous Pairs: Handedness
126(1)
4.7.2 Polarity
126(1)
4.7.3 Coherent Convergent-Beam Diffraction
127(1)
4.8 Tanaka Methods
127(1)
4.9 LACBED
127(5)
4.9.1 The Nature of LACBED Patterns
129(1)
4.9.2 Obtaining LACBED Patterns in Practice
130(1)
4.9.3 Choosing the Parameters
131(1)
4.10 Spherical Aberration and LACBED
132(1)
4.11 Crystal Defects in LACBED Patterns: Dislocations
132(2)
4.12 Crystal Defects in LACBED Patterns: Stacking Faults and Antiphase Boundaries
134(1)
4.13 Other Tanaka Methods
134(7)
4.13.1 Bright- and Dark-Field LACBED
134(2)
4.13.2 Convergent-Beam Imaging (CBIM)
136(1)
4.13.3 Rastering Techniques
137(4)
Appendix
141(1)
References
142(3)
5 Electron Crystallography, Charge-Density Mapping, and Nanodiffraction 145(22)
5.1 Can We Quantify Electron Diffraction Data,
146(1)
5.2 Quantitative CBED for Charge-Density Mapping
147(6)
5.3 Strain Mapping, High Voltage, Lattice Parameters Measured by QCBED
153(2)
5.4 Spot Patterns — Solving Crystal Structures
155(2)
5.5 The Precession Method
157(1)
5.6 Diffuse Scattering, Defects, Phonons, and Phase Transitions
158(1)
5.7 Diffractive Imaging, Ptychography, STEM Holography, Ronchigrams, and All That
159(3)
5.8 Equipment for Quantitative Electron Diffraction
162(1)
Appendix
163(1)
References
164(3)
6 Digital-Micrograph 167(30)
6.1 Introduction
168(2)
6.1.1 What Is DigitalMicrograph,
168(1)
6.1.2 Installing DigitalMicrograph Offline
168(1)
6.1.3 A (Very) Quick Overview
168(2)
6.2 Understanding Data
170(13)
6.2.1 What is an Image?
170(1)
6.2.2 Image Display
171(2)
6.2.3 Number Formats
173(5)
6.2.4 Image Calibration and Image Tags
178(2)
6.2.5 Some Simple Tools
180(1)
6.2.6 Extracting Subsets of Data
181(2)
6.3 Digital Image Processing
183(10)
6.3.1 Image 'Filters'
185(2)
6.3.2 Fourier Transformation in Images
187(2)
6.3.3 Fourier Filtering
189(3)
6.3.4 Coordinate Transformations
192(1)
6.4 Scripting and Plugins
193(2)
Appendix
195(1)
References
195(2)
7 Electron Waves, Interference, and Coherence 197(18)
7.1 Introduction
198(1)
7.2 Description of Waves
198(2)
7.2.1 Plane Wave
199(1)
7.2.2 Spherical Wave
199(1)
7.2.3 Modulated Wave
199(1)
7.3 Interference
200(1)
7.4 Modulation of a Wave by an Object
201(1)
7.5 Propagation of Waves
201(2)
7.5.1 Fresnel Approximation in the Near-Field of the Object
202(1)
7.5.2 Fraunhofer Approximation in the Far-Field of the Object
202(1)
7.6 Imaging: Formation of the Image Wave
203(1)
7.6.1 Fourier Transform of the Object Exit Wave
203(1)
7.6.2 Building the Image Wave by Inverse Fourier Transform of the Fourier Spectrum
203(1)
7.7 Electron Wave Function
204(1)
7.8 Electron Interference
205(1)
7.9 Findings
206(1)
7.10 Interpretation
207(1)
7.11 Coherence
207(6)
7.11.1 Spatial Coherence
208(2)
7.11.2 Coherent Current
210(1)
7.11.3 Temporal Coherence
211(1)
7.11.4 Total Degree of Coherence
211(1)
7.11.5 A Generalization
211(1)
7.11.6 Coherence at Inelastic Interaction
211(2)
Appendix
213(1)
References
213(2)
8 Electron Holography 215(18)
8.1 Big Problem with TEM: Phase Contrast
216(1)
8.2 Wave Modulation and Conventional Imaging
216(3)
8.2.1 Amplitude Modulation
216(1)
8.2.2 Phase Modulation
217(1)
8.2.3 What Do We See in an Electron Image?
218(1)
8.3 Principle of Image-Plane Off-Axis Holography
219(4)
8.3.1 Recording a Hologram
219(1)
8.3.2 Reconstructing the Object Exit-Wave
220(3)
8.3.3 What Have We Achieved so Far?
223(1)
8.4 Properties of the Reconstructed Object Exit-Wave
223(1)
8.5 Requirements of Holography
224(1)
8.6 Quality Criteria
224(1)
8.7 Application to Electric Potentials on Nanometer Scale
225(2)
8.7.1 Phase Shift Due to Electrostatic Potentials
225(1)
8.7.2 Experimental Considerations
226(1)
8.7.3 Application Example: p—n Junctions
227(1)
8.8 Further Derivatives of Electron Holography
227(3)
8.8.1 Holographic Tomography
227(1)
8.8.2 Dark-Field Holography
228(2)
Appendix
230(1)
References
230(3)
9 Focal-Series Reconstruction 233(34)
9.1 Motivation: Why the Effort?
234(1)
9.2 Quick Walk Through Electron Diffraction
235(2)
9.3 From the Wavefunction to the Image
237(12)
9.3.1 Imaging with a 'Neutral' Microscope
238(2)
9.3.2 Linear Imaging with a Constant-Phase-Shift Microscope
240(1)
9.3.3 Linear Imaging with a Real Microscope
241(6)
9.3.4 From Oscillations to Windings: an Integral View on Linear Imaging
247(2)
9.4 From the Images to the Wavefunction
249(8)
9.4.1 Tomographic Interpretation of Focal Series
249(1)
9.4.2 Fundamental Properties of Focal Series
250(3)
9.4.3 An Explicit Solution to the Linear Inversion Problem
253(2)
9.4.4 Nonlinear Reconstruction
255(1)
9.4.5 Numerical Correction of Residual Aberrations
256(1)
9.5 Application Examples
257(6)
9.5.1 Twin Boundaries in BaTiO3
258(2)
9.5.2 Stacking Fault in GaAs
260(3)
Appendix
263(1)
References
264(3)
10 Direct Methods for Image Interpretation 267(16)
10.1 Introduction
268(1)
10.2 Basics of Image Formation
268(3)
10.2.1 Real imaging
268(1)
10.2.2 Successive Imaging Steps
269(1)
10.2.3 Coherent Imaging
269(1)
10.2.4 High-Resolution Imaging in the TEM
270(1)
10.3 Focal-Series Reconstruction of the Exit Wave
271(1)
10.4 Interpretation of the Reconstructed Exit Wave
271(3)
10.4.1 Electron Channeling
272(1)
10.4.2 Argand Plot
273(1)
10.5 Quantitative Structure Refinement
274(6)
10.5.1 Precision Versus Resolution
276(1)
10.5.2 Quantitative Model-Based Structure Determination
276(4)
Appendix
280(1)
References
280(3)
11 Imaging in STEM 283(60)
11.1 Z-Contrast STEM: an Introduction
284(4)
11.1.1 Independent Scatterers
284(1)
11.1.2 An Array of Scatterers
284(1)
11.1.3 As the Crystal Thickens
284(2)
11.1.4 Inside and Outside
286(1)
11.1.5 The Effect of Defects
287(1)
11.1.6 Quasicrystals
288(1)
11.2 An Electron's Eye View of STEM
288(5)
11.2.1 Plane Waves and Probes
291(1)
11.2.2 Rayleigh, Airy and Resolution
292(1)
11.3 Lens Aberrations for STEM
293(12)
11.3.1 The Benefits of Aberration Correction
295(5)
11.3.2 Resolution in the Third Dimension — Depth Resolution
300(5)
11.4 Spatial and Temporal Incoherence
305(5)
11.4.1 Spatial Incoherence
305(1)
11.4.2 Temporal Incoherence
306(1)
11.4.3 "How Do I Know if I Have a Coherent Probe?" The Ronchigram
306(4)
11.5 Coherent or Incoherent Imaging
310(13)
11.5.1 A Point Detector; Coherent Imaging
311(1)
11.5.2 An Infinite Detector: Incoherent Imaging
312(2)
11.5.3 An Annular Detector: Incoherent Dark-Field or Bright-Field Imaging
314(1)
11.5.4 Atoms Are Smaller in HAADF STEM
315(1)
11.5.5 Transverse Coherence
316(1)
11.5.6 The Origin of Contrast in the Scanned Image
317(1)
11.5.7 Transfer Function and Damping Function
318(1)
11.5.8 Longitudinal Coherence
319(4)
11.6 Dynamical Diffraction
323(3)
11.7 Other Sources of Image Contrast
326(3)
11.8 Image Processing
329(3)
11.9 Image Simulation
332(3)
11.9.1 Bloch Waves
333(1)
11.9.2 Multislice
333(1)
11.9.3 Bloch Waves with Absorption
333(1)
11.9.4 There Is No Stobb's Factor in HAADF
334(1)
11.10 Future Directions
335(2)
Appendix
337(1)
References
338(5)
12 Electron Tomography 343(34)
12.1 Theory of Projection
344(2)
12.2 Back-Projection
346(1)
12.3 Constrained Reconstruction
347(3)
12.3.1 Constraint by Projection Consistency
347(1)
12.3.2 Constraint by Discrete Methods
348(1)
12.3.3 Constraint by Symmetry
348(1)
12.3.4 Metric-Based Constraint
348(2)
12.4 Other Reconstruction Approaches
350(1)
12.5 Meeting the Projection Requirement
350(1)
12.6 STEM Tomography
351(3)
12.7 Element-Selected Tomography
354(2)
12.8 Dark-Field TEM Tomography
356(2)
12.9 Holographic Tomography
358(1)
12.10 Atomistic Tomography
359(1)
12.11 Experimental Limitations
360(4)
12.12 Beam Damage and Contamination
364(1)
12.13 Automated Acquisition
365(1)
12.14 Tilt-Series Alignment
366(2)
12.15 Visualization of Three-Dimensional Datasets
368(1)
12.16 Segmentation
369(2)
12.17 Quantitative Analysis of Volumetric Data
371(2)
Appendix
373(1)
References
373(4)
13 EFTEM 377(28)
13.1 Introduction
378(1)
13.2 Why Use EFTEM?
378(1)
13.3 Instrumentation for EFTEM
379(2)
13.3.1 General TEM Considerations
379(1)
13.3.2 The Imaging Filter
379(1)
13.3.3 Detector Considerations
380(1)
13.4 Limitations and Artefacts
381(4)
13.4.1 Spatial Resolution in EFTEM Images
381(2)
13.4.2 Non-Isochromaticity
383(1)
13.4.3 Sample Drift
383(1)
13.4.4 Diffraction Contrast
384(1)
13.4.5 Illumination Convergence
384(1)
13.5 Application of EFTEM
385(2)
13.5.1 Zero-Loss Imaging and Diffraction
385(1)
13.5.2 Measuring Relative Thickness (t/A Mapping)
386(1)
13.6 Core-Loss Elemental Mapping
387(2)
13.6.1 Elemental Mapping (Three-Window Method)
387(1)
13.6.2 Jump-Ratio Mapping (Two-Window Method)
388(1)
13.7 EFTEM Spectrum-Imaging
389(3)
13.8 Low-Loss Imaging
392(1)
13.9 Alternative Imaging Techniques for Biological Specimens
393(1)
13.10 Quantitative Elemental Mapping
394(2)
13.11 Chemical State Mapping Using ELNES
396(1)
13.12 Hybrid EFTEM Modes (ω-q, Line Spectrum EFTEM)
397(1)
13.13 EFTEM Tomography
398(3)
Appendix
401(1)
References
401(4)
14 Calculating EELS 405(20)
14.1 Introduction
406(1)
14.2 Density Functional Theory (DFT)
407(5)
14.2.1 Introduction to DFT
407(2)
14.2.2 The Exchange Correlation Potential
409(1)
14.2.3 Approximations to the Potential
409(1)
14.2.4 Basis Sets
410(2)
14.2.5 The Korringa—Kohn—Rostoker (KKR) Method
412(1)
14.3 Calculations of the ELNES
412(5)
14.3.1 ELNES Theory
412(2)
14.3.2 The Core Hole
414(1)
14.3.3 Multiplet Theory
415(1)
14.3.4 Multiple Scattering (MS) Methods
416(1)
14.4 Calculating Low-Loss EELS
417(4)
Appendix
421(1)
References
422(3)
15 Diffraction & X-ray Excitation 425(14)
15.1 Introduction
426(1)
15.2 ALCHEMI
426(1)
15.3 Gedanken ALCHEMI
426(2)
15.4 Two Examples
428(3)
15.4.1 Dilute Solution/Partition Coefficient Analysis
428(2)
15.4.2 Concentrated Solution/OTL Analysis
430(1)
15.5 Delocalization and Axial Channeling
431(1)
15.6 Optimizing ALCHEMI: 'Statistical' ALCHEMI
432(1)
15.7 Incoherent Channeling Patterns
432(1)
15.8 Vacancies and Interstitials
432(2)
15.9 Chemistry
434(1)
Appendix
435(1)
References
436(3)
16 X-ray and EELS Imaging 439(28)
16.1 What Are Spectral Images and Why Should We Collect Them?
440(1)
16.2 Some History
441(1)
16.3 Acquisition and Analysis of Spectral Images
442(9)
16.3.1 Sampling and the Effect of Probe Versus Pixel Size (STEM-XEDS/EELS) or Magnification (EFTEM)
442(1)
16.3.2 Signal: Count Rate, Dwell Time, Spectral Image Size, and Acquisition Time
443(3)
16.3.3 Drift Correction and Beam Damage
446(1)
16.3.4 Conventional Data Analysis Methods
446(5)
16.4 Multivariate Statistical Analysis Methods
451(7)
16.4.1 Principal Components Analysis (PCA)
454(1)
16.4.2 Factor Rotations
455(1)
16.4.3 Multivariate Curve Resolution (MCR)
456(1)
16.4.4 Quantification
457(1)
16.5 Example of X-ray and Electron Energy-Loss Spectral Image Acquisition and Analysis
458(6)
16.5.1 Fe-Ni Spectral Image Acquisition and Quantification
458(1)
16.5.2 Mn-Doped SrTiO3 Grain Boundary Spectral Image Acquisition and Quantification
459(3)
16.5.3 Plasmon Mapping of AG Nanorods: EELS Spectral Image Analysis
462(2)
Appendix
464(1)
References
464(3)
17 Practical Aspects and Advanced Applications of XEDS 467(38)
17.1 Performance Parameters of XEDS Detectors
468(4)
17.1.1 Detector, Fundamental Parameters
468(2)
17.1.2 Monitoring Detector Contamination
470(1)
17.1.3 Software to Determine Detector Parameters
471(1)
17.2 X-ray Spectrum Simulation — a Tutorial and Applications of DTSA
472(14)
17.2.1 What Is DTSA?
473(2)
17.2.2 A Brief Tutorial of X-ray Spectrum Simulation for a Thin Specimen Using DTSA
475(2)
17.2.3 Details of X-ray Simulation in DTSA
477(4)
17.2.4 Application 1: Confirmation of Peak Overlap
481(1)
17.2.5 Application 2: Evaluation of X-ray Absorption into a Thin Specimen
482(1)
17.2.6 Application 3: Evaluation of the AEM-XEDS Interface
483(1)
17.2.7 Application 4: Estimation of the Detectability Limits
483(3)
17.3 The ζ-factor Method: a New Approach for Quantitative X-ray Analysis of Thin Specimens
486(6)
17.3.1 Why Bother with Quantification?
486(1)
17.3.2 What Is the ζ-factor?
487(1)
17.3.3 Quantification Procedure in the ζ-factor Method
488(1)
17.3.4 Determination of ζ factors
489(1)
17.3.5 Applications of ζ-factor Method
490(2)
17.4 Contemporary Applications of X-ray Analysis
492(8)
17.4.1 Renaissance of X-ray Analysis
493(1)
17.4.2 XEDS Tomography for 3D Elemental Distribution
494(1)
17.4.3 Atomic Resolution X-ray Mapping
495(5)
Appendix
500(1)
References
501(4)
Figure and Table Credits 505(10)
Index 515
C. Barry Carter is the Editor-in-Chief of the Journal of Materials Science and a CINT Distinguished Affiliate Scientist. He teaches at UConn. David B. Williams is the Monte Ahuja Endowed Deans Chair, Executive Dean of The Professional Colleges and Dean of the College of Engineering at The Ohio State University.