Preface |
|
xi | |
Author |
|
xiii | |
|
|
1 | (4) |
|
|
3 | (2) |
|
Chapter 2 Uncertainty Quantification |
|
|
5 | (16) |
|
|
5 | (1) |
|
2.2 Uncertainty Quantification |
|
|
6 | (4) |
|
|
6 | (1) |
|
|
7 | (2) |
|
|
9 | (1) |
|
|
9 | (1) |
|
|
9 | (1) |
|
|
10 | (3) |
|
2.3.1 Pearson Correlation Coefficient |
|
|
10 | (1) |
|
2.3.2 Spearman Correlation Coefficient |
|
|
11 | (1) |
|
2.3.3 Kendall Correlation Coefficient |
|
|
12 | (1) |
|
|
13 | (2) |
|
|
15 | (6) |
Section I Methods and Theories |
|
|
Chapter 3 Monte Carlo Methods |
|
|
21 | (16) |
|
|
21 | (3) |
|
3.1.1 Mathematical Formulation of MC Integration |
|
|
21 | (1) |
|
3.1.2 Plain (Crude) MC Algorithm |
|
|
22 | (1) |
|
3.1.3 Geometric MC Algorithm |
|
|
23 | (1) |
|
|
24 | (3) |
|
3.2.1 Importance Sampling Algorithm |
|
|
24 | (2) |
|
3.2.2 Weight Function Approach |
|
|
26 | (1) |
|
3.2.3 Latin Hypercube Sampling Approach |
|
|
26 | (1) |
|
3.3 Random Interpolation Quadrature |
|
|
27 | (1) |
|
3.4 Iterative MC Methods for Linear Equations |
|
|
28 | (4) |
|
3.4.1 Iterative MC Algorithms |
|
|
29 | (2) |
|
3.4.2 Convergence and Mapping |
|
|
31 | (1) |
|
3.5 Markov Chain MC Methods for the Eigenvalue Problem |
|
|
32 | (4) |
|
3.5.1 Formulation of the Eigenvalue Problem |
|
|
32 | (2) |
|
3.5.2 Method for Choosing the Number of Iterations k |
|
|
34 | (1) |
|
3.5.3 Method for Choosing the Number of Chains |
|
|
35 | (1) |
|
|
36 | (1) |
|
Chapter 4 Polynomial Chaos Expansion |
|
|
37 | (14) |
|
4.1 Fundamental Description of PCE |
|
|
37 | (1) |
|
4.2 Stochastic Approximation |
|
|
38 | (1) |
|
4.3 Hermite Polynomials and Gram-Charlier Series |
|
|
39 | (3) |
|
4.4 Karhunen-Loeve Transform |
|
|
42 | (2) |
|
4.5 Karhunen-Loeve Expansion |
|
|
44 | (1) |
|
4.6 Comparison and Discussion |
|
|
45 | (4) |
|
|
49 | (2) |
|
Chapter 5 Stochastic Finite Element Method |
|
|
51 | (20) |
|
5.1 Methods for Discretization of Random Fields |
|
|
51 | (5) |
|
5.1.1 Point Discretization Methods |
|
|
51 | (1) |
|
5.1.1.1 The Midpoint Method |
|
|
51 | (1) |
|
5.1.1.2 The Shape Function Method |
|
|
52 | (1) |
|
5.1.2 Average Discretization Methods |
|
|
52 | (2) |
|
|
52 | (1) |
|
5.1.2.2 The Weighted Integral Method |
|
|
53 | (1) |
|
5.1.3 Series Expansion Methods |
|
|
54 | (2) |
|
|
56 | (3) |
|
|
59 | (5) |
|
|
64 | (2) |
|
5.5 Finite Element Reliability Analysis |
|
|
66 | (3) |
|
|
69 | (2) |
|
Chapter 6 Machine Learning Methods |
|
|
71 | (16) |
|
6.1 Artificial Neural Networks |
|
|
71 | (5) |
|
|
71 | (3) |
|
|
74 | (1) |
|
6.1.3 Theoretical Properties |
|
|
74 | (20) |
|
6.1.3.1 Computational Power |
|
|
74 | (1) |
|
|
75 | (1) |
|
|
75 | (1) |
|
6.1.3.4 Generalization and Statistics |
|
|
75 | (1) |
|
|
76 | (1) |
|
6.3 Backpropagation Neural Network |
|
|
76 | (1) |
|
6.4 Restricted Boltzmann Machine |
|
|
77 | (3) |
|
6.5 Hopfield Neural Network |
|
|
80 | (1) |
|
6.6 Convolutional Neural Network |
|
|
81 | (2) |
|
|
83 | (4) |
Section II Examples |
|
|
Chapter 7 Numerical Examples |
|
|
87 | (20) |
|
|
87 | (3) |
|
7.2 Orthogonal Polynomial |
|
|
90 | (2) |
|
|
92 | (2) |
|
7.4 Kriging Surrogate Model |
|
|
94 | (12) |
|
7.4.1 Numerical Issues of the Kriging Model |
|
|
96 | (2) |
|
7.4.1.1 Issue 1: Requirement of Sufficient Effective Samples |
|
|
96 | (2) |
|
7.4.1.2 Issue 2: Effects of the Correlation Matrix |
|
|
98 | (1) |
|
|
98 | (2) |
|
7.4.3 Kriging Surrogate Model with Subset Simulation |
|
|
100 | (12) |
|
7.4.3.1 The Six-Hump Camel-Back Function |
|
|
100 | (2) |
|
7.4.3.2 Vibration Analysis of a Wing Structure |
|
|
102 | (4) |
|
|
106 | (1) |
|
Chapter 8 Monte Carlo-Based Finite Element Method |
|
|
107 | (16) |
|
|
107 | (1) |
|
8.2 Graphene Material Description |
|
|
108 | (1) |
|
8.3 Monte Carlo-Based Finite Element Method |
|
|
109 | (3) |
|
8.4 Graphene with Stochastic Defects |
|
|
112 | (1) |
|
8.5 Buckling Results and Discussion |
|
|
112 | (8) |
|
8.5.1 Probability Analysis |
|
|
112 | (2) |
|
8.5.2 Comparison and Discussion |
|
|
114 | (4) |
|
8.5.3 Displacement Results of Graphene Sheets |
|
|
118 | (2) |
|
|
120 | (1) |
|
|
120 | (3) |
|
Chapter 9 Impacts of Vacancy Defects in Resonant Vibration |
|
|
123 | (22) |
|
|
123 | (1) |
|
9.2 Materials and Methods |
|
|
124 | (4) |
|
9.3 Validation of the Model |
|
|
128 | (2) |
|
9.4 Results and Discussion |
|
|
130 | (12) |
|
9.4.1 Amount of Vacancy Defects |
|
|
130 | (3) |
|
9.4.2 Geometrical Parameters |
|
|
133 | (4) |
|
9.4.3 Material Parameters |
|
|
137 | (1) |
|
9.4.4 Graphene Sheets with Vacancy Defects |
|
|
137 | (5) |
|
|
142 | (1) |
|
|
142 | (3) |
|
Chapter 10 Uncertainty Quantification in Nanomaterials |
|
|
145 | (18) |
|
|
145 | (1) |
|
|
146 | (3) |
|
|
146 | (2) |
|
|
148 | (1) |
|
10.3 Program Implementation |
|
|
149 | (1) |
|
10.4 Discussion and Results |
|
|
150 | (9) |
|
10.4.1 Statistical Results |
|
|
150 | (3) |
|
10.4.2 Comparison and Discussion |
|
|
153 | (2) |
|
10.4.3 Uncertainty Analysis |
|
|
155 | (4) |
|
|
159 | (1) |
|
|
159 | (4) |
|
Chapter 11 Equivalent Young's Modulus Prediction |
|
|
163 | (20) |
|
|
163 | (1) |
|
11.2 Materials and Methods |
|
|
164 | (2) |
|
11.3 Results and Discussion |
|
|
166 | (14) |
|
11.3.1 Regular Deterministic Vacancy Defects |
|
|
166 | (5) |
|
11.3.2 Randomly Distributed Vacancy Defects |
|
|
171 | (9) |
|
|
180 | (1) |
|
|
180 | (3) |
|
Chapter 12 Strengthening Possibility by Random Vacancy Defects |
|
|
183 | (12) |
|
|
183 | (1) |
|
12.2 Materials and Methods |
|
|
183 | (2) |
|
12.3 Results and Discussion |
|
|
185 | (8) |
|
|
193 | (1) |
|
|
193 | (2) |
Index |
|
195 | |