Muutke küpsiste eelistusi

E-raamat: Uncertainty Quantification of Stochastic Defects in Materials

(Nantong University, China)
  • Formaat - EPUB+DRM
  • Hind: 59,79 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Uncertainty Quantification of Stochastic Defects in Materials investigates the uncertainty quantification methods for stochastic defects in material microstructures. It provides effective supplementary approaches for conventional experimental observation with the consideration of stochastic factors and uncertainty propagation. Pursuing a comprehensive numerical analytical system, this book establishes a fundamental framework for this topic, while emphasizing the importance of stochastic and uncertainty quantification analysis and the significant influence of microstructure defects on the material macro properties.

Key Features

  • Consists of two parts: one exploring methods and theories and the other detailing related examples
  • Defines stochastic defects in materials and presents the uncertainty quantification for defect location, size, geometrical configuration, and instability
  • Introduces general Monte Carlo methods, polynomial chaos expansion, stochastic finite element methods, and machine learning methods
  • Provides a variety of examples to support the introduced methods and theories
    • Applicable to MATLAB® and ANSYS software
  • This book is intended for advanced students interested in material defect quantification methods and material reliability assessment, researchers investigating artificial material microstructure optimization, and engineers working on defect influence analysis and nondestructive defect testing.



    Pursuing a comprehensive numerical analytical system, the book establishes a fundamental framework for this topic, while emphasizing the importance of stochastic and uncertainty quantification analysis and the significant influence of microstructure defects in the material macro properties.
    1. Overview.
    2. Stochastic Defects. Part I: Methods and Theories.
    3.
    Monte Carlo Methods.
    4. Polynomial Chaos Expansion.
    5. Stochastic Finite
    Element Method.
    6. Machine Learning Methods. Part II: Examples.
    7. Numerical
    Examples.
    8. Monte Carlo-based Finite Element Method.
    9. Impacts of Vacancy
    Defects in Resonant Vibration.
    10. Uncertainty Quantification in
    Nanomaterial.
    11. Equivalent Youngs Modulus Prediction.
    12. Strengthen
    Possibility by Random Vacancy Defects.
    Dr. Liu Chu received her B.E. degree in Materials Science and Engineering, and M.E. degree in Mechanics from Dalian Maritime University, China, and the Ph.D. in Mechanics from the Institut national des sciences appliquées de Rouen (INSA Rouen), France. Dr. Chu focuses on research in computational material mechanics and structural reliability. Her recent research interests include low-dimensional nanomaterial vacancy defects quantification, artificial material microstructure optimization, and mechanical structure reliability analysis. Since 2018, Dr. Chu has published 18 peer-reviewed science and technical papers in international journals and conferences. She is a member of IEEE and has served as a reviewer of several international journals.