Muutke küpsiste eelistusi

Video Over Wireless [Kõva köide]

  • Formaat: Hardback, 240 pages, kõrgus x laius x paksus: 231x163x20 mm, kaal: 494 g, 250 Illustrations
  • Ilmumisaeg: 16-Dec-2015
  • Kirjastus: McGraw-Hill Inc.,US
  • ISBN-10: 0071849289
  • ISBN-13: 9780071849289
  • Formaat: Hardback, 240 pages, kõrgus x laius x paksus: 231x163x20 mm, kaal: 494 g, 250 Illustrations
  • Ilmumisaeg: 16-Dec-2015
  • Kirjastus: McGraw-Hill Inc.,US
  • ISBN-10: 0071849289
  • ISBN-13: 9780071849289
Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product.







State-of-the-art wireless video standards, techniques, and best practices

This fully illustrated guide teaches the latest methods for effectively delivering and consuming high-quality mobile Internet video content on cross-platform personal devices. Video Over Wireless features clear and concise explanations of next-generation technologies, including over-the-top TV, wireless broadband, and video streaming and aggregation. Experienced educator and author Benny Bing offers expert insights on emerging standards as well as invaluable tips for maximizing coding efficiency and enhancing error resiliency.

Video Over Wireless covers:





Pay, digital, and online TV Internet-based mobile video Media clouds and cloud support for mobile apps Non-real-time TV delivery 802.11ac and 4G/5G LTE standards Wi-Fi deployments and applications Key issues in wireless transmission Single-antenna design for handheld devices Mobile digital TV and ATSC 2.0/3.0 Video traffic smoothing and multiplexing Apple and Microsoft adaptive bit rate streaming Spatial and temporal error concealment WebM, H.264/MPEG-4 AVC, and H.265/HEVC Video coding enhancements and the impact of different content types
Preface xv
1 Mobile Internet Video 1(28)
1.1 Accelerated Growth in Video Traffic
1(10)
1.1.1 Pay TV
2(1)
1.1.2 Digital TV
3(1)
1.1.3 Online TV
4(3)
1.1.4 Mobile Personal Devices
7(1)
1.1.5 Video Coding Standards
8(3)
1.1.6 Mobile TV
11(1)
1.2 Cloud Computing
11(3)
1.2.1 Media Cloud
12(1)
1.2.2 Cloud Support for Mobile Apps
13(1)
1.2.3 SDN and NFV
13(1)
1.3 Wireless Transmission
14(3)
1.3.1 Wi-Fi
15(1)
1.3.2 4G Cellular
16(1)
1.3.3 Wireless Power Charging
17(1)
1.4 Video Transmission and Distribution
17(7)
1.4.1 Adaptive Bit Rate Streaming
18(1)
1.4.2 Adaptive Streaming Framework
19(1)
1.4.3 Benefits of Adaptive Streaming
20(1)
1.4.4 Comparison of Adaptive Streaming Methods
20(1)
1.4.5 HTTP Live Streaming
21(2)
1.4.6 Peer-to-Peer Video Streaming
23(1)
1.4.7 Examples of P2P Protocols
23(1)
1.4.8 TV Program Analytics
23(1)
1.5 The User-TV Interface
24(3)
1.5.1 High-Definition Multimedia Interface
25(1)
1.5.2 Display Links
25(1)
1.5.3 Display Screen Content
26(1)
1.5.4 Smart TV versus Smart Remote
26(1)
1.5.5 Channel Change
27(1)
References
27(2)
2 Broadband Wireless Standards 29(32)
2.1 Introduction to Wi-Fi
29(5)
2.1.1 Wi-Fi Deployments and Applications
30(1)
2.1.2 Wi-Fi Hotspots
30(1)
2.1.3 Wi-Fi Community Networks
31(1)
2.1.4 Wi-Fi Municipal Networks
32(1)
2.1.5 Wi-Fi Stadiums
32(1)
2.1.6 Balloon-Powered Wireless Internet
33(1)
2.2 Evolution of 802.11
34(11)
2.2.1 Frequency Bands
36(1)
2.2.2 Single-Stream Transmission
36(2)
2.2.3 Single-Stream Wi-Fi and 4G
38(1)
2.2.4 IEEE 802.11n
39(1)
2.2.5 IEEE 802.11ac
40(1)
2.2.6 802.11ac Antenna Beamforming
41(3)
2.2.7 Power-Efficient 802.11ac Beamforming
44(1)
2.3 4G LTE Cellular Networks
45(9)
2.3.1 Heterogeneous Network Architecture
45(1)
2.3.2 LTE Features
45(1)
2.3.3 Frequency Bands
46(1)
2.3.4 Carrier Aggregation
47(1)
2.3.5 Unlicensed LTE
48(3)
2.3.6 LTE-Advanced and IMT-Advanced
51(2)
2.3.7 HetNet Topology
53(1)
2.3.8 Femtocells
53(1)
2.3.9 5G Cellular
54(1)
2.4 Digital TV
54(6)
2.4.1 Frequency Channels
55(1)
2.4.2 ATSC Standard
56(1)
2.4.3 Mobile DTV
56(1)
2.4.4 ATSC 2.0
57(2)
2.4.5 ATSC 3.0
59(1)
2.4.6 Non-Real-Time TV Delivery
59(1)
2.4.7 NRT Use Cases
59(1)
References
60(1)
3 Video Traffic Smoothing, Multiplexing, and Streaming 61(44)
3.1 Introduction
62(1)
3.2 Video Traffic Smoothing and Shaping
62(6)
3.2.1 Factors Affecting Smoothing Performance
63(1)
3.2.2 Frame Transmission Rate Control
63(3)
3.2.3 Video Rate Shaping
66(2)
3.3 Video Segment Streaming Rate
68(4)
3.3.1 Impact of Receiver Buffer Size
68(2)
3.3.2 Progressive Streaming
70(1)
3.3.3 Frame-Based Streaming
71(1)
3.4 Peak-to-Average Ratio
72(2)
3.4.1 PAR Using Frame Sizes
72(1)
3.4.2 Segment Duration
73(1)
3.4.3 Practical Considerations
73(1)
3.5 Multiplexing VBR Streams
74(17)
3.5.1 Bit Rate Variation
74(1)
3.5.2 Analysis of Coded Frame Size Distribution
75(3)
3.5.3 Statistical Multiplexing
78(1)
3.5.4 Long-Term Bit Rate Variation
79(8)
3.5.5 Multiplexing Gains
87(1)
3.5.6 Adaptive Shaping
88(3)
3.5.7 CBR Streams
91(1)
3.6 Adaptive Streaming
91(7)
3.6.1 Shaping Traffic in Adaptive Streaming
91(1)
3.6.2 Apple HLS
92(1)
3.6.3 Impact of Shaping and Scene Complexity on Quality Switching
93(1)
3.6.4 Impact of Shaping on Quality Switch Delay
94(1)
3.6.5 Impact of Shaping on Playback Duration
95(1)
3.6.6 Impact of Shaping on Start of Playback
95(1)
3.6.7 Impact of Unshaped Traffic on Quality Switching
96(1)
3.6.8 Comparison of HLS and MSS Streaming
97(1)
3.7 Adaptive Streaming Optimization
98(7)
3.7.1 Limitations of Fixed-Size Chunks
98(1)
3.7.2 Quality Levels and Chunk Duration
99(1)
3.7.3 Encoder Efficiency
99(1)
3.7.4 Bit Rates of Quality Levels
100(1)
3.7.5 Server Bandwidth Shaping
100(1)
3.7.6 Analyzing Network Congestion
101(1)
3.7.7 Content Security
101(1)
3.7.8 Aggregating Chunks
102(1)
3.7.9 Chunk Compression
102(1)
3.7.10 Reducing Start-Up Delay
102(1)
3.7.11 Quality Levels Using Video Resolution
103(2)
4 Wireless Video Transport 105(32)
4.1 Key Issues in Wireless Video Transmission
105(2)
4.1.1 Measures to Improve Video Transport
106(1)
4.1.2 Dealing with Packet Corruption
106(1)
4.2 Selective Information Dropping
107(4)
4.2.1 Data Partitioning
108(1)
4.2.2 Data Partitioning Performance
108(2)
4.2.3 Impact of Information Loss on Perceived Video Quality
110(1)
4.3 Quantization
111(1)
4.3.1 Quantization Levels
111(1)
4.3.2 Quantization Strategies
111(1)
4.3.3 Adaptive Quantization
112(1)
4.4 Error Concealment
112(7)
4.4.1 Spatial and Temporal Error Concealment
113(1)
4.4.2 Examples of Error Concealment Techniques
113(1)
4.4.3 Effectiveness of Error Concealment
114(2)
4.4.4 Impact on Visual Artifacts
116(1)
4.4.5 Order of Block Concealment
117(2)
4.5 Traditional One-to-One Streaming
119(4)
4.5.1 Distributed Peer-to-Peer Streaming
120(1)
4.5.2 BitTorrent Operation
121(1)
4.5.3 BT and HTTP Performance Comparison
122(1)
4.6 Wireless Video Streaming
123(6)
4.6.1 IEEE 802.11 Video Streaming Performance
124(1)
4.6.2 Range Performance
124(3)
4.6.3 Impact of Higher Layers
127(2)
4.6.4 Impact of Number of Spatial Streams
129(1)
4.7 Adaptive Video Streaming
129(8)
4.7.1 Adaptive Video Quality
130(1)
4.7.2 Playlists
130(1)
4.7.3 Bandwidth Estimation
131(1)
4.7.4 Single-Level HLS Adaptive Streaming
131(2)
4.7.5 Multilevel HLS Adaptive Streaming
133(2)
4.7.6 HLS Streaming Overheads
135(2)
5 Advances in Video Coding Standards 137(34)
5.1 General Video Coding Operations
137(4)
5.1.1 Transform Coding
139(1)
5.1.2 Quantization
139(1)
5.1.3 Deblocking Filter
140(1)
5.1.4 Entropy Coding
140(1)
5.2 MPEG Standards
141(7)
5.2.1 MPEG Frames
141(1)
5.2.2 I Frames
141(1)
5.2.3 P Frames
142(1)
5.2.4 B Frames
143(1)
5.2.5 Groups of Pictures
144(1)
5.2.6 Motion Prediction
144(2)
5.2.7 Reference Frames
146(1)
5.2.8 Bit Rate Variability of P and B Frames
147(1)
5.3 HEVC Overview
148(11)
5.3.1 Fundamental Benefits
148(1)
5.3.2 Differences between AVC and HEVC
149(2)
5.3.3 Applications
151(1)
5.3.4 Quadtree Structure
151(1)
5.3.5 Determining the Quadtree Depth
152(2)
5.3.6 Slices, Tiles, Wavefronts
154(1)
5.3.7 Intraprediction
155(1)
5.3.8 Interprediction
156(1)
5.3.9 Motion Vector Prediction
156(1)
5.3.10 Merge Mode
157(1)
5.3.11 Skip Mode
157(1)
5.3.12 Advanced MV Prediction
157(1)
5.3.13 Entropy Encoding
158(1)
5.3.14 In-Loop Filters
158(1)
5.4 WebM Overview
159(10)
5.4.1 VP9 versus VP8 and AVC
160(1)
5.4.2 Color Formats
160(1)
5.4.3 Coding Tools
160(2)
5.4.4 Intraprediction
162(1)
5.4.5 Interprediction Reference Frames
162(1)
5.4.6 Interprediction Modes
162(1)
5.4.7 Compound Inter-Intra Mode
163(1)
5.4.8 Subpixel Interpolation
163(1)
5.4.9 Transforms
163(1)
5.4.10 Hybrid Transform Considerations
164(1)
5.4.11 Entropy Encoding
165(2)
5.4.12 Loop Filter
167(1)
5.4.13 Segmentation
167(1)
5.4.14 Error Resilience
168(1)
5.4.15 Parallelism
168(1)
5.4.16 Scalability
169(1)
References
169(2)
6 Video Coding Performance 171(28)
6.1 Coding Performance of VP8 and AVC
171(13)
6.1.1 One- and Two-Pass VP8 Encoding
172(2)
6.1.2 VP8 and AVC Encoding Rates
174(2)
6.1.3 VP8 Video Quality and Coding Efficiency
176(1)
6.1.4 VP8 and AVC Coding Efficiencies
177(2)
6.1.5 VP8 and AVC Video Quality
179(1)
6.1.6 VP8 Coding Efficiency and Video Quality Variation
180(1)
6.1.7 Impact of VP8 Reference and Key Frames
181(1)
6.1.8 VP8 and AVC Two-Pass CBR Encoding
181(1)
6.1.9 VP8 One-Pass Capped VBR Encoding
182(2)
6.1.10 Summary of VP8 and AVC Encoding
184(1)
6.2 Lossless HEVC Coding
184(11)
6.2.1 Lossy HEVC Coding
186(3)
6.2.2 HEVC Intracoding
189(1)
6.2.3 HEVC Low-Delay Coding
190(2)
6.2.4 HEVC Random Access Coding
192(1)
6.2.5 HEVC and AVC Coding Efficiencies
193(1)
6.2.6 HEVC, AVC, and VP9 Coding Efficiencies
194(1)
6.3 Error Resiliency of HEVC and AVC
195(1)
6.3.1 Packet and Frame Loss Metrics
195(1)
6.3.2 HEVC and AVC Error Resiliency
196(1)
6.4 Coding for Adaptive Streaming
196(3)
Acronyms and Abbreviations 199(6)
Index 205