Muutke küpsiste eelistusi

Wind Power Electric Systems: Modeling, Simulation and Control 2014 ed. [Kõva köide]

  • Formaat: Hardback, 202 pages, kõrgus x laius: 235x155 mm, kaal: 4616 g, 219 Illustrations, black and white; XX, 202 p. 219 illus. With online files/update., 1 Hardback
  • Sari: Green Energy and Technology
  • Ilmumisaeg: 05-May-2014
  • Kirjastus: Springer London Ltd
  • ISBN-10: 1447164245
  • ISBN-13: 9781447164241
  • Kõva köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 202 pages, kõrgus x laius: 235x155 mm, kaal: 4616 g, 219 Illustrations, black and white; XX, 202 p. 219 illus. With online files/update., 1 Hardback
  • Sari: Green Energy and Technology
  • Ilmumisaeg: 05-May-2014
  • Kirjastus: Springer London Ltd
  • ISBN-10: 1447164245
  • ISBN-13: 9781447164241
The book helps readers understand key concepts in standalone and grid connected wind energy systems and features analysis into the modeling and optimization of commonly used configurations through the implementation of different control strategies.

Utilizing several electrical machinery control approaches, such as vector control and direct torque control 'Wind Power Electric Systems' equips readers with the means to understand, assess and develop their own wind energy systems and to evaluate the performance of such systems.

Mathematical models are provided for each system and a corresponding MATLAB/SIMULINK example is included at the end of each section in order to demonstrate key processes and methods.
1 Conversion Wind System Overview
1(50)
1.1 Introduction
1(1)
1.2 Global Structure of a Conversion Wind System
1(27)
1.2.1 Wind Speeds
1(2)
1.2.2 Aerogenerator
3(22)
1.2.3 Power Electronics Interface
25(1)
1.2.4 Load
26(2)
1.3 Introduction to Wind Systems
28(15)
1.3.1 Stand-Alone Wind Systems
28(1)
1.3.2 Directly Coupled Wind System
28(10)
1.3.3 Stand-Alone Wind System with Storage
38(1)
1.3.4 Hybrid System
38(2)
1.3.5 Grid Wind Systems
40(1)
1.3.6 Sizing of Wind Turbine
40(3)
1.4 Maintenance of Wind Systems
43(1)
1.4.1 Large Maintenance
43(1)
1.4.2 Low Maintenance
44(1)
1.5 Total Costs for Wind Turbine Installation
44(1)
1.6 Onshore and Offshore Wind Power Technologies
44(1)
1.6.1 Onshore Wind Power Technologies
44(1)
1.6.2 Offshore Wind Power Technologies
45(1)
1.7 Conclusion
45(6)
References
45(6)
2 Wind Energy Conversion and Power Electronics Modeling
51(26)
2.1 Wind Energy Conversion Modeling
51(14)
2.1.1 Aerogenerator Modeling
51(14)
2.2 Power Electronics Modeling
65(10)
2.2.1 Soft Starter
65(1)
2.2.2 Capacitor Bank
65(1)
2.2.3 Diode Rectifier
66(1)
2.2.4 The Back-to-Back PWM-VSI
66(2)
2.2.5 Tandem Converter
68(1)
2.2.6 Matrix Converter
68(3)
2.2.7 Multilevel Converter
71(2)
2.2.8 DC/DC Converter
73(1)
2.2.9 Load Modeling
74(1)
2.2.10 Grid Model
75(1)
2.3 Conclusion
75(2)
References
75(2)
3 Optimisation of Wind System Conversion
77(30)
3.1 Introduction to Optimization Algorithms
77(1)
3.2 Maximum Power Point Tracking Algorithms
77(10)
3.2.1 Perturb and Observe (P&O) Technique or Hill Climb Searching (HCS)
77(6)
3.2.2 Tip Speed Ratio Method
83(1)
3.2.3 Power Signal Feedback (PSF) Method
84(3)
3.3 Optimal Torque Control
87(5)
3.4 Sliding Mode Control
92(2)
3.5 Fuzzy Logic Controller Technique
94(2)
3.6 Adaptative Fuzzy Logic Controller
96(1)
3.7 Artificial Neural Networks Method
97(2)
3.8 Radial Basis Function Network
99(1)
3.9 Particle Swarm Optimization Method
99(8)
3.9.1 Adaptative Neuro-Fuzzy Inference System
100(3)
3.9.2 Comparison Between Different Optimization Methods
103(1)
References
104(3)
4 Modeling of Storage Systems
107(26)
4.1 Introduction
107(1)
4.2 Electrochemical Storage
107(6)
4.2.1 Electrochemical Batteries
107(5)
4.2.2 Electrochemical Battery Model
112(1)
4.3 Hydrogen Energy Storage
113(3)
4.4 Mechanical Storage
116(11)
4.4.1 Flywheel Energy Storage
116(8)
4.4.2 Pumped Hydro Energy Storage
124(2)
4.4.3 Compressed Air Energy Storage
126(1)
4.5 Electromagnetic Storage
127(2)
4.5.1 Supercapacitor Energy Storage
127(1)
4.5.2 Superconducting Magnetic Energy Storage
127(2)
4.6 Thermal Energy Storage
129(1)
4.7 Conclusion
129(4)
References
129(4)
5 Control of Wind Turbine Systems
133(30)
5.1 Basic Principles of Wind Turbine Control Systems
133(1)
5.2 Level 1 (Mechanical Part)
133(8)
5.2.1 No Linear Control by Static State Feedback
133(2)
5.2.2 No Linear Dynamic Control by State Feedback
135(1)
5.2.3 Indirect Speed Control
136(5)
5.2.4 Comparison Between the Three Controls
141(1)
5.3 Level 2 (Electrical Part)
141(19)
5.3.1 Scalar Control of Wind System
141(2)
5.3.2 Vector Control of Wind System
143(1)
5.3.3 Direct Torque Control of Wind System
144(4)
5.3.4 Modulated Hysteresis Direct Torque Control of Wind System
148(6)
5.3.5 Direct Power Control of Wind System
154(2)
5.3.6 Sliding Mode Control
156(3)
5.3.7 Fuzzy Logic Controller
159(1)
5.4 Conclusion
160(3)
References
160(3)
6 Hybrid Wind Systems
163(22)
6.1 Advantages and Disadvantages of a Hybrid System
163(1)
6.1.1 Advantages of Hybrid System
163(1)
6.1.2 Disadvantages of a Hybrid System
163(1)
6.2 Configuration of Hybrid System
163(4)
6.2.1 Architecture of DC Bus
163(1)
6.2.2 Architecture of AC Bus
164(2)
6.2.3 Architecture of DC/AC Bus
166(1)
6.2.4 Classifications of Hybrid Energy Systems
167(1)
6.3 Different Combinations of Hybrid Systems
167(6)
6.3.1 Hybrid Wind/Photovoltaic System
167(1)
6.3.2 Sizing of Hybrid Wind/Photovoltaic System
168(5)
6.4 Hybrid Wind/Photovoltaic/Diesel Generator System
173(6)
6.5 Hybrid Photovoltaic/Wino//Hydro System
179(2)
6.6 Hybrid Photovoltaic/Wind/Fuel Cell System
181(1)
6.7 Conclusion
182(3)
References
183(2)
7 Examples of Wind Systems
185
7.1 Examples of Wind Turbines
185(17)
7.1.1 Wind Turbine of 600 W
185(3)
7.1.2 Wind Turbine of 1 kW
188(14)
7.2 Conclusion
202
Dr. Ziani Djamila Rekioua is a Phd holder in Electrical Engineering. Her interest areas include the control of different electrical machines (Permanent Magnet Synchronous and Induction Machines). She supervises Masters and Phd level students in wind, photovoltaic and hybrid applications, such as pumping and rural electrification.