Muutke küpsiste eelistusi

Antioxidant Polymers: Synthesis, Properties, and Applications [Kõva köide]

Edited by , Edited by
  • Formaat: Hardback, 520 pages, kõrgus x laius x paksus: 244x163x33 mm, kaal: 835 g
  • Ilmumisaeg: 15-Jun-2012
  • Kirjastus: Wiley-Scrivener
  • ISBN-10: 1118208544
  • ISBN-13: 9781118208540
  • Formaat: Hardback, 520 pages, kõrgus x laius x paksus: 244x163x33 mm, kaal: 835 g
  • Ilmumisaeg: 15-Jun-2012
  • Kirjastus: Wiley-Scrivener
  • ISBN-10: 1118208544
  • ISBN-13: 9781118208540
"It is well known that reactive oxygen species (ROS) are involved in a variety of physiological and pathological processes. ROS are continuously balanced by antioxidative defense systems in healthy individuals. However, when the physiological balance between pro-oxidants and antioxidants is disrupted in favor of the former, oxidative stress occurs ensuing in potential damage for the organism"--

Chemists, chemical engineers, and biomedical scientists survey polymers that display antioxidant properties, research on which has grown rapidly over the past decade because of the benefits of the combination. The topics include natural polyphenol and flavonoid polymers, cellulose and dextran antioxidant polymers for biomedical applications, antioxidant polymers by free radical grafting on natural polymers, synthetic polymers with antioxidant properties, and biopolymeric colloidal particles loaded with polyphenolic antioxidants. Annotation ©2012 Book News, Inc., Portland, OR (booknews.com)

Antioxidant Polymers is an exhaustive overview of the recent developments in the field of polymeric materials showing antioxidant properties. This research area has grown rapidly in the last decade because antioxidant polymers have wide industry applications ranging from materials science to biomedical, pharmaceuticals and cosmetics.

Preface xv
List of Contributors
xix
1 Antioxidants: Introduction
1(22)
Chunhuan He
Yingming Pan
Xiaowen Ji
Hengshan Wang
1.1 The Meaning of Antioxidant
1(1)
1.2 The Category of Antioxidants and Introduction of often Used Antioxidants
2(6)
1.2.1 BHT
4(1)
1.2.2 Quercetin
5(1)
1.2.3 BHA
5(1)
1.2.4 2-tert-Butylhydroquinone (TBHQ)
6(1)
1.2.5 Gallic Acid
6(1)
1.2.6 Resveratrol
6(1)
1.2.7 Luteolin
7(1)
1.2.8 Caffeic Acid
7(1)
1.2.9 Catechin
7(1)
1.3 Antioxidant Evaluation Methods
8(5)
1.3.1 DPPH Radical Scavenging Assay
8(1)
1.3.2 ABTS Radical Scavenging Activity
8(1)
1.3.3 Phosphomolybdenum Assay
9(1)
1.3.4 Reducing Power Assay
9(1)
1.3.5 Total Phenols Assay by Folin-Ciocalteu Reagent
10(1)
1.3.6 Hydroxyl Radical Scavenging Assay
10(1)
1.3.7 β-carotene-linoleic Acid Assay
11(1)
1.3.8 Superoxide Radical Scavenging Assay
11(1)
1.3.9 Metal Ion Chelating Assay
12(1)
1.3.10 Determination of Total Flavonoid Content
12(1)
1.4 Antioxidant and its Mechanisms
13(2)
1.4.1 Mechanism of Scavenging Free Radicals
13(1)
1.4.2 Mechanism of Metal Chelating Properties
14(1)
1.5 Adverse Effects of Antioxidants
15(8)
References
16(7)
2 Natural Polyphenol and Flavonoid Polymers
23(32)
Kelly C. Heim
2.1 Introduction
23(1)
2.2 Structural Classification of Polyphenols
24(10)
2.2.1 Simple Phenolics
24(2)
2.2.2 Stilbenes
26(1)
2.2.3 Lignin
27(1)
2.2.4 Flavonoids
28(1)
2.2.5 Tannins
29(5)
2.3 Polyphenol Biosynthesis and Function in Plants
34(2)
2.3.1 Biosynthesis
34(2)
2.3.2 Protective Roles
36(1)
2.4 Tannins in Human Nutrition
36(5)
2.4.1 Dietary Sources and Intake
36(1)
2.4.2 Absorption and Metabolism
37(4)
2.5 Antioxidant Activity of Tannins
41(4)
2.5.1 Mechanisms
41(3)
2.5.2 Structure-activity Relationships
44(1)
2.6 Protective Effects of Proanthocyanidins in Human Health
45(1)
2.7 Conclusion
46(9)
Acknowledgements
46(1)
References
47(8)
3 Synthesis and Applications of Polymeric Flavonoids
55(32)
Hiroshi Uyama
Young-Jin Kim
3.1 Introduction
55(2)
3.2 Polycondensates of Catechin with Aldehydes
57(12)
3.3 Enzymatically Polymerized Flavonoids
69(7)
3.4 Biopolymer-flavonoid Conjugates
76(8)
3.5 Conclusion
84(3)
References
84(3)
4 Antioxidant Polymers: Metal Chelating Agents
87(28)
Hiba M. Zalloum
Mohammad S. Mubarak
4.1 Introduction
87(4)
4.1.1 Antioxidants
87(1)
4.1.2 Natural Polymers as Antioxidants
88(2)
4.1.3 Chelating Polymers and Heavy Metal Ions
90(1)
4.2 Chitin and Chitosan
91(5)
4.2.1 Chitin and Chitosan Derivatives
94(1)
4.2.2 Chitin and Chitosan as Chelating Agents
95(1)
4.3 Alginates
96(1)
4.4 Chelation Studies
97(9)
4.4.1 Chitosan Derivatives as Chelating Agents
101(2)
4.4.2 Alginates as Chelating Agents
103(3)
4.5 Conclusions
106(9)
References
107(8)
5 Antioxidant Polymers by Chitosan Modification
115(18)
Jarmila Vinsova
Eva Vavrikova
5.1 Introduction
115(2)
5.2 Chitosan Characteristics
117(1)
5.3 Reactive Oxygen Species and Chitosan as Antioxidant
117(3)
5.4 Structure Modifications
120(9)
5.4.1 N-Carboxymethyl Chitosan Derivatives
120(1)
5.4.2 Quaternary Salts
121(1)
5.4.3 Sulphur Derivatives
122(2)
5.4.4 Chitosan Containing Phenolic Compounds
124(3)
5.4.5 Schiff Bases of Chitosan
127(2)
5.5 Conclusion
129(4)
References
129(4)
6 Cellulose and Dextran Antioxidant Polymers for Biomedical Applications
133(20)
Sonia Trombino
Roberta Cassano
Teresa Ferrarelli
6.1 Introduction
133(1)
6.2 Antioxidant Polymers Cellulose-based
134(8)
6.2.1 Cellulose
134(1)
6.2.2 Antioxidant Biomaterials Carboxymethylcellulose-based
135(1)
6.2.3 Ferulate Lipoate and Tocopherulate Cellulose
136(2)
6.2.4 Cellulose Hydrogel Containing Trans-ferulic Acid
138(1)
6.2.5 Polymeric Antioxidant Membranes Based on Modified Cellulose and PVDF/cellulose Blends
139(1)
6.2.6 Synthesis of Antioxidant Novel Broom and Cotton Fibers Derivatives
140(2)
6.3 Antioxidant Polymers Dextran-based
142(11)
6.3.1 Dextran
142(1)
6.3.2 Biocompatible Dextran-coated Nanoceria with pH-dependent Antioxidant Properties
143(2)
6.3.3 Coniugates of Dextran with Antioxidant Properties
145(1)
6.3.4 Dextran Hydrogel Linking Trans-ferulic Acid for the Stabilization and Transdermal Delivery of Vitamin E
146(3)
References
149(4)
7 Antioxidant Polymers by Free Radical Grafting on Natural Polymers
153(26)
Manuela Curcio
Ortensia Ilaria Parisi
Francesco Puoci
Ilaria Altimari
Umile Gianfranco Spizzirri
Nevio Picci
7.1 Introduction
153(3)
7.2 Grafting of Antioxidant Molecules on Natural Polymers
156(1)
7.3 Proteins-based Antioxidant Polymers
157(7)
7.4 Polysaccharides-based Antioxidant Polymers
164(11)
7.4.1 Chitosan
164(2)
7.4.2 Starch
166(4)
7.4.3 Inulin and Alginate
170(5)
7.5 Conclusions
175(4)
Acknowledgements
176(1)
References
176(3)
8 Natural Polymers with Antioxidant Properties: Poly-/oligosaccharides of Marine Origin
179(24)
Guangling Jiao
Guangli Yu
Xiaoliang Zhao
Junzeng Zhang
H. Stephen Ewart
8.1 Introduction to Polysaccharides from Marine Sources
180(3)
8.1.1 Polysaccharides from Marine Algae
180(1)
8.1.2 Polysaccharides from Marine Invertebrates
181(1)
8.1.3 Marine Bacteria Polysaccharides
182(1)
8.2 Antioxidant Activities of Marine Polysaccharides and their Derivatives
183(8)
8.2.1 Antioxidant Evaluation Methods
183(4)
8.2.2 Marine Sulfated Polysaccharides
187(1)
8.2.3 Marine Uronic Acid-containing Polysaccharides
188(1)
8.2.4 Marine Non-acidic Polysaccharides and their Oligomers
189(1)
8.2.5 Marine Glycoconjugates
189(2)
8.3 Applications of Marine Antioxidant Polysaccharides and their Derivatives
191(2)
8.3.1 Applications in Food Industry
191(1)
8.3.2 Applications as Medicinal Materials
191(1)
8.3.3 Applications as Cosmetic Ingredients
192(1)
8.3.4 Applications in Other Fields
193(1)
8.4 Structure-antioxidant Relationships of Marine Poly-/oligosaccharides
193(2)
8.5 Conclusions
195(8)
Acknowledgements
195(1)
References
195(8)
9 Antioxidant Peptides from Marine Origin: Sources, Properties and Potential Applications
203(56)
Begona Gimenez
M. Elvira Lopez-Caballero
M. Pilar Montero
M. Carmen Gomez-Guillen
9.1 Introduction
204(3)
9.2 Whole Fish Hydrolysates
207(16)
9.3 Marine Invertebrate Hydrolysates
223(4)
9.4 Fish Frames Hydrolysates
227(1)
9.5 Viscera Hydrolysates
228(4)
9.6 Muscle Hydrolysates
232(8)
9.7 Collagen and Gelatin Hydrolysates
240(3)
9.8 Seaweeds Hydrolysates
243(2)
9.9 Potential Applications
245(4)
9.10 Conclusions
249(10)
Acknowledgements
250(1)
References
250(9)
10 Synthetic Antioxidant Polymers: Enzyme Mimics
259(74)
Cheng Wang
Gang-lin Yan
Gui-min Luo
10.1 Introduction
260(1)
10.2 Organo-selenium/tellurium Compound Mimics
261(20)
10.2.1 Chemistry of Organo-selenium/tellurium
261(2)
10.2.2 Synthetic Organo-selenium/tellurium Compounds as GPX Mimics
263(9)
10.2.3 Cyclodextrin-based Mimics
272(9)
10.3 Metal Complex Mimics
281(14)
10.3.1 The Role of Metal Ions in Complexes
282(1)
10.3.2 Manganese Complexes Mimics
283(10)
10.3.3 Other Metal Complex Mimics
293(2)
10.4 Selenoprotein Mimics
295(17)
10.4.1 Strategies of Selenoprotein Synthesis
295(10)
10.4.2 Synthetic Selenoproteins
305(7)
10.5 Supramolecular Nanoenzyme Mimics
312(13)
10.5.1 Advantages of Supramolecular Nanoenzyme Mimics
313(1)
10.5.2 Supramolecular Nanoenzyme Mimics with Antioxidant Acitivity
314(11)
10.6 Conclusion
325(8)
References
325(8)
11 Synthetic Polymers with Antioxidant Properties
333(22)
Ashveen V. Nand
Paul A. Kilmartin
11.1 Introduction
334(1)
11.2 Intrinsically Conducting Polymers
335(1)
11.3 Intrinsically Conducting Polymers with Antioxidant Properties
336(1)
11.4 Synthesis of Antioxidant Intrinsically Conducting Polymers
337(3)
11.4.1 Chemical Synthesis
337(1)
11.4.2 Electrochemical Synthesis
338(1)
11.4.3 Other Polymerization Techniques
339(1)
11.5 Polymer Morphologies
340(4)
11.5.1 Polyaniline
340(2)
11.5.2 Polypyrrole
342(1)
11.5.3 Poly(3,4-ethylenedioxythiophene)
343(1)
11.6 Mechanism of Radical Scavenging
344(2)
11.7 Assessment of Free Radical Scavenging Capacity
346(2)
11.7.1 DPPH Assay
347(1)
11.7.2 ABTS Assay
347(1)
11.8 Factors Affecting the Radical Scavenging Activity
348(2)
11.9 Polymer Blends and Practical Applications
350(5)
References
351(4)
12 Synthesis of Antioxidant Monomers Based on Sterically Hindered Phenols, α-Tocopherols, Phosphites and Hindered Amine Light Stabilizers (HALS) and their Copolymerization with Ethylene, Propylene or Styrene
355(30)
Carl-Eric Wilen
12.1 Introduction
356(5)
12.2 Synthesis of Antioxidant Monomers to Enhance Physical Persistence and Performance of Stabilizers
361(8)
12.2.1 Copolymerization of Antioxidants with α-Olefins Using Coordination Catalysts
363(1)
12.2.2 Synthesis of Antioxidant Monomers
364(5)
12.3 Phenolic Antioxidant Monomers and their Copolymerization with Coordination Catalysts
369(3)
12.3.1 Copolymerization of Antioxidant Monomers with Ethylene or Propylene using Traditional Ziegler-Natta Catalysts
369(3)
12.4 Copolymerization of Antioxidant Monomers with Ethylene, Propylene, Styrene and Carbon Monoxide Using Single Site Catalysts
372(7)
12.4.1 Copolymerization of Phenolic Antioxidant Monomers
372(4)
12.4.2 Copolymerization of HALS Monomers using Single Site Catalysts
376(3)
12.5 Conclusions
379(6)
Acknowledgements
380(1)
References
380(5)
13 Novel Polymeric Antioxidants for Materials
385(42)
Ashish Dhawan
Vijayendra Kumar
Virinder S. Parmar
Ashok L. Cholli
13.1 Industrial Antioxidants
386(1)
13.2 Antioxidants Used in Plastics (Polymer) Industry
386(3)
13.2.1 Primary Antioxidants
388(1)
13.2.2 Secondary Antioxidants
389(1)
13.3 Antioxidants Used in Lubricant Industry
389(1)
13.4 Antioxidants Used in Elastomer (Rubber) Industry
390(2)
13.5 Antioxidants Used in Fuel Industry
392(1)
13.6 Antioxidants Used in Food Industry
393(2)
13.6.1 Natural Food Antioxidants
393(1)
13.6.2 Synthetic Food Antioxidants
394(1)
13.7 Limitations of Conventional Antioxidants
395(1)
13.7.1 Performance Issues because of Antioxidant Efficiency Loss
395(1)
13.7.2 Environmental Issues and Safety Concerns
395(1)
13.7.3 Compatibility Issues
396(1)
13.7.4 Poor Thermal Stability
396(1)
13.8 Trends towards High Molecular Weight Antioxidants
396(11)
13.8.1 Functionalization of Conventional Antioxidants with Hydrocarbon Chains
397(1)
13.8.2 Macromolecular Antioxidants
397(1)
13.8.3 Polymer-bound Antioxidants
398(3)
13.8.4 Polymeric Antioxidants
401(6)
13.9 Motivation, Design and Methodology for Synthesis of Novel Polymeric Antioxidant Motivation
407(2)
13.9.1 Design of the Polymeric Antioxidants
408(1)
13.9.2 Methodology
408(1)
13.10 Biocatalytic Synthesis of Polymeric Antioxidants
409(1)
13.11 General Procedure for Enzymatic Polymerization
410(11)
13.11.1 Synthesis and Characterization of Polymeric Antioxidants
411(6)
13.11.2 Antioxidant Activity of Polymeric Antioxidants
417(3)
13.11.3 Evaluation of Polymeric Antioxidants in Vegetable Oils by Accelerated Oxidation
420(1)
13.12 Conclusions
421(6)
Acknowledgement
422(1)
References
422(5)
14 Biopolymeric Colloidal Particles Loaded with Polyphenolic Antioxidants
427(32)
Ashok R. Patel
Krassimir P. Velikov
14.1 Introduction
427(1)
14.2 Polyphenols: Antioxidant Properties and Health Benefits
428(1)
14.3 Polyphenols: Formulation and Delivery Challenges
429(2)
14.3.1 Solubility
430(1)
14.3.2 Chemical Reactivity and Degradation
430(1)
14.3.3 Stability in Physiological Conditions
430(1)
14.3.4 First Pass Metabolism and Pharmacokinetics
431(1)
14.3.5 Organoleptic Properties and Aesthetic Appeal
431(1)
14.4 Polyphenols Loaded Biopolymeric Colloidal Particles
431(23)
14.4.1 Curcumin Loaded Biopolymeric Colloidal Particles
433(8)
14.4.2 Silibinin Loaded Biopolymeric Colloidal Particles
441(6)
14.4.3 Quercetin Loaded Biopolymeric Colloidal Particles
447(7)
14.5 Conclusion
454(5)
References
455(4)
15 Antioxidant Polymers for Tuning Biomaterial Biocompatibility: From Drug Delivery to Tissue Engineering
459(26)
David Cochran
Thomas D. Dziubla
15.1 Introduction
459(1)
15.2 Oxidative Stress in Relation to Biocompatibility
460(7)
15.2.1 Mechanism of Immune Response
460(4)
15.2.2 Examples in Practice
464(3)
15.3 Antioxidant Polymers in Drug Delivery
467(3)
15.3.1 Uses as Active Pharmaceutical Ingredients
467(1)
15.3.2 Uses as Pharmaceutical Excipients
468(2)
15.4 Antioxidant Polymers in Anti-cancer Therapies
470(2)
15.5 Antioxidant Polymers in Wound Healing and Tissue Engineering
472(4)
15.5.1 Antioxidant Polymers Incorporated into Biomaterials
472(4)
15.6 Conclusions and Perspectives
476(9)
References
479(6)
Index 485
Giuseppe Cirillo obtained his PhD on "Methodologies for the Development of Molecules of Pharmaceutical Interest" in 2008 from University of Calabria, Italy. He is currently in a postdoctoral position at the same university and is CEO of Macrofarm, a University of Calabria spin-off company. He is also a visiting researcher at the Leibniz Institute for Solid State and Materials Research Dresden, Germany. He is the author or coauthor of more than 50 publications, including research and review articles as well as invited book chapters.

Francesca Iemma obtained her PhD in chemical sciences in 1997 from the University of Calabria. She is currently an associate professor in pharmaceutical technology in the faculty of Pharmacy, Nutrition and Health Sciences of the University of Calabria. She is a founding member of Macrofarm, a University of Calabria spin-off company. She has extensive teaching experience in the field of organic chemistry and pharmaceutical technology, and is author or coauthor of more than 80 publications, including research and review articles as well as invited book chapters.