Acknowledgments |
|
xv | |
Foreword |
|
xvii | |
Introduction |
|
xix | |
About the Author |
|
xxiii | |
About the Contributors |
|
xxv | |
Part One: Planning the Menu |
|
1 | (48) |
|
|
3 | (22) |
|
|
4 | (8) |
|
|
7 | (1) |
|
|
8 | (1) |
|
|
8 | (1) |
|
|
9 | (1) |
|
|
10 | (1) |
|
|
10 | (1) |
|
|
10 | (1) |
|
|
11 | (1) |
|
|
11 | (1) |
|
Choosing the Modeling Methodology |
|
|
12 | (8) |
|
|
12 | (3) |
|
|
15 | (1) |
|
|
16 | (1) |
|
|
17 | (2) |
|
|
19 | (1) |
|
|
20 | (3) |
|
|
21 | (1) |
|
Product Focus versus Customer Focus |
|
|
22 | (1) |
|
|
23 | (2) |
|
Selecting the Data Sources |
|
|
25 | (24) |
|
|
26 | (1) |
|
|
27 | (9) |
|
|
27 | (9) |
|
|
36 | (1) |
|
Selecting Data for Modeling |
|
|
36 | (8) |
|
|
37 | (3) |
|
|
40 | (2) |
|
|
42 | (2) |
|
Constructing the Modeling Data Set |
|
|
44 | (4) |
|
How Big Should My Sample Be? |
|
|
44 | (1) |
|
|
45 | (2) |
|
Developing Models from Modeled Data |
|
|
47 | (1) |
|
Combining Data from Multiple Offers |
|
|
47 | (1) |
|
|
48 | (1) |
Part Two: The Cooking Demonstration |
|
49 | (132) |
|
Preparing the Data for Modeling |
|
|
51 | (20) |
|
|
51 | (6) |
|
|
54 | (1) |
|
|
55 | (2) |
|
Creating the Modeling Data Set |
|
|
57 | (3) |
|
|
58 | (2) |
|
|
60 | (10) |
|
|
60 | (9) |
|
|
69 | (1) |
|
|
70 | (1) |
|
Selecting and Transforming the Variables |
|
|
71 | (30) |
|
Defining the Objective Function |
|
|
71 | (3) |
|
Probability of Activation |
|
|
72 | (1) |
|
|
73 | (1) |
|
|
73 | (1) |
|
|
74 | (1) |
|
|
74 | (2) |
|
|
74 | (1) |
|
|
75 | (1) |
|
|
75 | (1) |
|
|
76 | (4) |
|
|
76 | (4) |
|
|
80 | (5) |
|
Developing Linear Predictors |
|
|
85 | (13) |
|
|
85 | (10) |
|
|
95 | (3) |
|
|
98 | (1) |
|
|
99 | (2) |
|
Processing and Evaluating the Model |
|
|
101 | (24) |
|
|
102 | (22) |
|
|
103 | (5) |
|
|
108 | (11) |
|
|
119 | (1) |
|
|
119 | (2) |
|
Comparing Method 1 and Method 2 |
|
|
121 | (3) |
|
|
124 | (1) |
|
|
125 | (26) |
|
|
125 | (5) |
|
|
126 | (1) |
|
|
127 | (3) |
|
Scoring Alternate Data Sets |
|
|
130 | (4) |
|
|
134 | (12) |
|
|
134 | (4) |
|
|
138 | (8) |
|
Decile Analysis on Key Variables |
|
|
146 | (4) |
|
|
150 | (1) |
|
Implementing and Maintaining the Model |
|
|
151 | (30) |
|
|
151 | (10) |
|
|
152 | (3) |
|
Outside Scoring and Auditing |
|
|
155 | (6) |
|
|
161 | (9) |
|
Calculating the Financials |
|
|
161 | (5) |
|
Determining the File Cut-off |
|
|
166 | (1) |
|
Champion versus Challenger |
|
|
166 | (1) |
|
|
167 | (3) |
|
|
170 | (7) |
|
|
176 | (1) |
|
|
177 | (2) |
|
|
177 | (1) |
|
|
178 | (1) |
|
|
179 | (2) |
Part Three: Recipes for Every Occasion |
|
181 | (142) |
|
Understanding Your Customer: Profiling and Segmentation |
|
|
183 | (24) |
|
What Is the Importance of Understanding Your Customer? |
|
|
184 | (6) |
|
Types of Profiling and Segmentation |
|
|
184 | (6) |
|
Profiling and Penetration Analysis of a Catalog Company's Customers |
|
|
190 | (8) |
|
|
190 | (3) |
|
|
193 | (5) |
|
Developing a Customer Value Matrix for a Credit Card Company |
|
|
198 | (5) |
|
|
198 | (5) |
|
Performing Cluster Analysis to Discover Customer Segments |
|
|
203 | (1) |
|
|
204 | (3) |
|
Targeting New Prospects: Modeling Response |
|
|
207 | (24) |
|
|
207 | (3) |
|
All Responders Are Not Created Equal |
|
|
208 | (2) |
|
|
210 | (11) |
|
|
210 | (8) |
|
|
218 | (3) |
|
|
221 | (3) |
|
Validation Using Boostrapping |
|
|
224 | (6) |
|
|
230 | (1) |
|
|
230 | (1) |
|
Avoiding High-Risk Customers: Modeling Risk |
|
|
231 | (26) |
|
Credit Scoring and Risk Modeling |
|
|
232 | (2) |
|
|
234 | (1) |
|
|
235 | (9) |
|
|
244 | (4) |
|
|
248 | (3) |
|
|
249 | (2) |
|
|
251 | (2) |
|
|
252 | (1) |
|
A Different Kind of Risk: Fraud |
|
|
253 | (2) |
|
|
255 | (2) |
|
Retaining Profitable Customers: Modeling Churn |
|
|
257 | (24) |
|
|
258 | (1) |
|
|
258 | (5) |
|
|
263 | (5) |
|
|
263 | (2) |
|
|
265 | (3) |
|
|
268 | (2) |
|
|
270 | (3) |
|
|
271 | (2) |
|
|
273 | (5) |
|
Creating Attrition Profiles |
|
|
273 | (3) |
|
Optimizing Customer Profitability |
|
|
276 | (2) |
|
Retaining Customers Proactively |
|
|
278 | (1) |
|
|
278 | (3) |
|
Targeting Profitable Customers: Modeling Lifetime Value |
|
|
281 | (24) |
|
|
282 | (4) |
|
|
282 | (2) |
|
Components of Lifetime Value |
|
|
284 | (2) |
|
Applications of Lifetime Value |
|
|
286 | (4) |
|
Lifetime Value Case Studies |
|
|
286 | (4) |
|
Calculating Lifetime Value for a Renewable Product or Service |
|
|
290 | (1) |
|
Calculating Lifetime Value: A Case Study |
|
|
290 | (13) |
|
Case Study: Year One Net Revenues |
|
|
291 | (7) |
|
Lifetime Value Calculation |
|
|
298 | (5) |
|
|
303 | (2) |
|
Fast Food: Modeling on the Web |
|
|
305 | (18) |
|
|
306 | (10) |
|
|
306 | (1) |
|
|
307 | (2) |
|
|
309 | (1) |
|
Selecting the Methodology |
|
|
310 | (6) |
|
|
316 | (1) |
|
Gaining Customer Insight in Real Time |
|
|
317 | (1) |
|
Web Usage Mining---A Case Study |
|
|
318 | (4) |
|
|
322 | (1) |
Appendix A: Univariate Analysis for Continuous Variables |
|
323 | (24) |
Appendix B: Univariate Analysis of Categorical Variables |
|
347 | (8) |
Recommended Reading |
|
355 | (2) |
What's on the CD-ROM? |
|
357 | (2) |
Index |
|
359 | |