|
|
viii | |
|
|
xiii | |
Notation and Acronyms |
|
xiv | |
Preface |
|
xix | |
Acknowledgments |
|
xxiii | |
|
PART I DEPENDENCE AND INTERDEPENDENCE |
|
|
|
1 Promises and Pitfalls of Inferential Network Analysis |
|
|
3 | (14) |
|
1.1 A Basis for Considering Networks |
|
|
4 | (4) |
|
1.2 Networks and Complex Statistical Dependence |
|
|
8 | (6) |
|
1.3 Methods Covered in This Book |
|
|
14 | (3) |
|
2 Detecting and Adjusting for Network Dependencies |
|
|
17 | (18) |
|
2.1 Detecting Dependencies: Conditional Uniform Graph Tests |
|
|
19 | (7) |
|
2.2 The Quadratic Assignment Procedure (QAP) |
|
|
26 | (5) |
|
|
31 | (1) |
|
|
32 | (3) |
|
PART II THE FAMILY OF EXPONENTIAL RANDOM GRAPH MODELS (ERGMS) |
|
|
|
|
35 | (32) |
|
|
35 | (5) |
|
3.2 The Exponential Random Graph Model (ERGM) |
|
|
40 | (2) |
|
3.3 ERGM Specification: A Brief Introduction |
|
|
42 | (9) |
|
|
51 | (5) |
|
|
56 | (8) |
|
|
64 | (1) |
|
|
65 | (1) |
|
|
66 | (1) |
|
|
67 | (31) |
|
|
68 | (2) |
|
4.2 Exogenous Covariate Effects |
|
|
70 | (5) |
|
4.3 Endogenous Network Effects |
|
|
75 | (14) |
|
4.4 Creating New Statistics |
|
|
89 | (1) |
|
|
90 | (6) |
|
|
96 | (1) |
|
|
97 | (1) |
|
5 Estimation and Degeneracy |
|
|
98 | (18) |
|
5.1 Methods for Estimating ERGM |
|
|
98 | (5) |
|
5.2 Problem of Degeneracy |
|
|
103 | (3) |
|
5.3 Adjusting Specifications to Correct Degeneracy and Improve Model Fit |
|
|
106 | (8) |
|
5.4 Other Estimation Methods for ERGMs |
|
|
114 | (1) |
|
|
115 | (1) |
|
|
115 | (1) |
|
6 ERG Type Models for Longitudinally Observed Networks |
|
|
116 | (32) |
|
|
116 | (1) |
|
|
117 | (5) |
|
6.3 The Temporal Exponential Random Graph Model (TERGM) |
|
|
122 | (2) |
|
|
124 | (7) |
|
6.5 To Pool or Not to Pool? Temporal Stability of Effects |
|
|
131 | (3) |
|
|
134 | (4) |
|
6.7 The Stochastic Actor-Oriented Model (SAOM) |
|
|
138 | (8) |
|
|
146 | (1) |
|
|
146 | (2) |
|
7 Valued-Edge ERGMs: The Generalized ERGM (GERGM) |
|
|
148 | (19) |
|
|
150 | (3) |
|
7.2 Specifying Processes on Weighted Networks |
|
|
153 | (1) |
|
7.3 Avoiding Degeneracy in the GERGM |
|
|
154 | (2) |
|
|
156 | (3) |
|
7.5 Applications in the Literature |
|
|
159 | (4) |
|
|
163 | (1) |
|
|
163 | (4) |
|
PART III LATENT SPACE NETWORK MODELS |
|
|
|
8 The Basic Latent Space Model |
|
|
167 | (53) |
|
|
167 | (1) |
|
8.2 Motivation: Theoretical and Mathematical Perspective |
|
|
168 | (3) |
|
8.3 The Euclidean Latent Space Model |
|
|
171 | (6) |
|
|
177 | (8) |
|
|
185 | (4) |
|
|
189 | (23) |
|
8.7 Interpretation of Latent Space Models |
|
|
212 | (5) |
|
8.8 Strengths, Assumptions, and Limitations of the Latent Space Model |
|
|
217 | (1) |
|
|
218 | (1) |
|
|
218 | (2) |
|
9 Identification, Estimation, and Interpretation of the Latent Space Model |
|
|
220 | (16) |
|
9.1 Parameter Identification |
|
|
221 | (8) |
|
9.2 Identification: Some Solutions |
|
|
229 | (2) |
|
9.3 Interpreting the Latent Space |
|
|
231 | (1) |
|
9.4 The Problem with Isolates |
|
|
232 | (1) |
|
|
233 | (2) |
|
|
235 | (1) |
|
10 Extending the Latent Space Model |
|
|
236 | (36) |
|
|
236 | (12) |
|
10.2 Valued-Edge Networks |
|
|
248 | (7) |
|
|
255 | (6) |
|
10.4 Random Effects Models |
|
|
261 | (4) |
|
10.5 The Additive and Multiplicative Effects Latent Factor Model (LFM) |
|
|
265 | (4) |
|
|
269 | (1) |
|
|
270 | (1) |
|
|
271 | (1) |
References |
|
272 | (16) |
Index |
|
288 | |