Update cookies preferences

E-book: Asymptotic Spreading for General Heterogeneous Fisher-KPP Type Equations

Other books in subject:
  • Format - PDF+DRM
  • Price: 112,71 €*
  • * the price is final i.e. no additional discount will apply
  • Add to basket
  • Add to Wishlist
  • This ebook is for personal use only. E-Books are non-refundable.
Other books in subject:

DRM restrictions

  • Copying (copy/paste):

    not allowed

  • Printing:

    not allowed

  • Usage:

    Digital Rights Management (DRM)
    The publisher has supplied this book in encrypted form, which means that you need to install free software in order to unlock and read it.  To read this e-book you have to create Adobe ID More info here. Ebook can be read and downloaded up to 6 devices (single user with the same Adobe ID).

    Required software
    To read this ebook on a mobile device (phone or tablet) you'll need to install this free app: PocketBook Reader (iOS / Android)

    To download and read this eBook on a PC or Mac you need Adobe Digital Editions (This is a free app specially developed for eBooks. It's not the same as Adobe Reader, which you probably already have on your computer.)

    You can't read this ebook with Amazon Kindle

"In this monograph, we review the theory and establish new and general results regarding spreading properties for heterogeneous reaction-diffusion equations. These are concerned with the dynamics of the solution starting from initial data with compact support. The nonlinearity f is of Fisher-KPP type, and admits 0 as an unstable steady state and 1 as a globally attractive one (or, more generally, admits entire solutions , where is unstable and is globally attractive). Here, the coefficients are only assumed to be uniformly elliptic, continuous and bounded in . To describe the spreading dynamics, we construct two non-empty star-shaped compact sets such that for all compact set (resp. all closed set , one has lim . The characterizations of these sets involve two new notions of generalized principal eigenvalues for linear parabolic operators in unbounded domains. In particular, it allows us to show that and to establish an exact asymptotic speed of propagation in various frameworks. These include: almost periodic, asymptotically almost periodic, uniquely ergodic, slowly varying, radially periodic and random stationary ergodic equations. In dimension N, if the coefficients converge in radial segments, again we show that and this set is characterized using some geometric optics minimization problem. Lastly, we construct an explicit example of non-convex expansion sets"--
Henri Berestycki, Ecole des Hautes en Sciences Sociales, Paris, France.

Gregoire Nadin, Laboratoire Jacques-Louis Lions, Paris, France.