Introduction |
|
xvii | |
Assessment Test |
|
xxix | |
Answers to Assessment Test |
|
xxxv | |
|
|
1 | (66) |
|
Chapter 1 AWS Al ML Stack |
|
|
3 | (46) |
|
|
4 | (6) |
|
Image and Video Operations |
|
|
6 | (4) |
|
|
10 | (3) |
|
|
11 | (2) |
|
|
13 | (2) |
|
|
13 | (1) |
|
|
14 | (1) |
|
|
15 | (2) |
|
Amazon Translate Features |
|
|
16 | (1) |
|
|
17 | (2) |
|
|
19 | (2) |
|
|
19 | (2) |
|
|
21 | (2) |
|
|
22 | (1) |
|
|
23 | (4) |
|
|
27 | (5) |
|
|
30 | (2) |
|
|
32 | (1) |
|
|
33 | (1) |
|
|
34 | (1) |
|
|
35 | (7) |
|
Analyzing and Preprocessing Data |
|
|
36 | (3) |
|
|
39 | (1) |
|
|
40 | (2) |
|
AWS Machine Learning Devices |
|
|
42 | (1) |
|
|
43 | (1) |
|
|
43 | (1) |
|
|
44 | (5) |
|
Chapter 2 Supporting Services from the AWS Stack |
|
|
49 | (18) |
|
|
50 | (4) |
|
|
50 | (2) |
|
|
52 | (1) |
|
|
52 | (1) |
|
|
53 | (1) |
|
|
54 | (2) |
|
|
56 | (3) |
|
|
59 | (1) |
|
|
60 | (2) |
|
|
62 | (1) |
|
|
62 | (1) |
|
|
63 | (4) |
|
Part II Phases of Machine Learning Workloads |
|
|
67 | (138) |
|
Chapter 3 Business Understanding |
|
|
69 | (8) |
|
|
70 | (1) |
|
Business Problem Identification |
|
|
71 | (1) |
|
|
72 | (1) |
|
|
73 | (1) |
|
|
74 | (3) |
|
Chapter 4 Framing a Machine Learning Problem |
|
|
77 | (8) |
|
|
78 | (2) |
|
|
80 | (1) |
|
|
81 | (1) |
|
|
81 | (1) |
|
|
82 | (3) |
|
Chapter 5 Data Collection |
|
|
85 | (16) |
|
|
86 | (2) |
|
|
88 | (1) |
|
|
89 | (7) |
|
|
89 | (3) |
|
Streaming Data Collection |
|
|
92 | (4) |
|
|
96 | (1) |
|
|
96 | (2) |
|
|
98 | (3) |
|
Chapter 6 Data Preparation |
|
|
101 | (12) |
|
|
102 | (5) |
|
|
102 | (2) |
|
|
104 | (1) |
|
Amazon SageMaker Processing |
|
|
105 | (1) |
|
|
105 | (2) |
|
|
107 | (1) |
|
|
107 | (1) |
|
|
107 | (1) |
|
|
107 | (2) |
|
|
109 | (4) |
|
Chapter 7 Feature Engineering |
|
|
113 | (14) |
|
Feature Engineering Concepts |
|
|
114 | (6) |
|
Feature Engineering for Tabular Data |
|
|
114 | (5) |
|
Feature Engineering for Unstructured and Time Series Data |
|
|
119 | (1) |
|
Feature Engineering Tools on AWS |
|
|
120 | (1) |
|
|
121 | (1) |
|
|
121 | (2) |
|
|
123 | (4) |
|
|
127 | (40) |
|
|
128 | (19) |
|
Supervised Machine Learning |
|
|
129 | (9) |
|
|
138 | (3) |
|
|
141 | (1) |
|
Unsupervised Machine Learning |
|
|
142 | (4) |
|
|
146 | (1) |
|
Local Training and Testing |
|
|
147 | (2) |
|
|
149 | (1) |
|
|
150 | (4) |
|
|
154 | (4) |
|
|
155 | (1) |
|
|
155 | (3) |
|
|
158 | (1) |
|
|
158 | (1) |
|
Hyperparameter Optimization |
|
|
159 | (3) |
|
|
162 | (1) |
|
|
162 | (2) |
|
|
164 | (3) |
|
Chapter 9 Model Evaluation |
|
|
167 | (14) |
|
|
168 | (1) |
|
Metrics and Visualization |
|
|
169 | (5) |
|
Metrics in AWS AI/ML Services |
|
|
173 | (1) |
|
|
174 | (1) |
|
|
175 | (1) |
|
|
176 | (5) |
|
Chapter 10 Model Deployment and Inference |
|
|
181 | (14) |
|
Deployment for AI Services |
|
|
182 | (2) |
|
Deployment for Amazon SageMaker |
|
|
184 | (3) |
|
SageMaker Hosting: Under the Hood |
|
|
184 | (3) |
|
Advanced Deployment Topics |
|
|
187 | (4) |
|
|
187 | (1) |
|
|
188 | (2) |
|
|
190 | (1) |
|
|
191 | (1) |
|
|
191 | (1) |
|
|
192 | (3) |
|
Chapter 11 Application Integration |
|
|
195 | (10) |
|
Integration with On-Premises Systems |
|
|
196 | (2) |
|
Integration with Cloud Systems |
|
|
198 | (2) |
|
Integration with Front-End Systems |
|
|
200 | (1) |
|
|
200 | (1) |
|
|
201 | (1) |
|
|
202 | (3) |
|
Part III Machine Learning We 11-Architected Lens |
|
|
205 | (82) |
|
Chapter 12 Operational Excellence Pillar for ML |
|
|
207 | (14) |
|
Operational Excellence on AWS |
|
|
208 | (7) |
|
|
209 | (1) |
|
Continuous Integration and Continuous Delivery |
|
|
210 | (3) |
|
|
213 | (1) |
|
|
214 | (1) |
|
|
215 | (1) |
|
|
215 | (2) |
|
|
217 | (4) |
|
Chapter 13 Security Pillar |
|
|
221 | (20) |
|
|
222 | (6) |
|
|
223 | (1) |
|
|
224 | (1) |
|
Fine-Grained Access Controls |
|
|
225 | (1) |
|
|
226 | (1) |
|
|
227 | (1) |
|
Secure SageMaker Environments |
|
|
228 | (7) |
|
Authentication and Authorization |
|
|
228 | (3) |
|
|
231 | (1) |
|
|
232 | (1) |
|
|
233 | (2) |
|
|
235 | (1) |
|
|
235 | (1) |
|
|
236 | (1) |
|
|
236 | (2) |
|
|
238 | (3) |
|
Chapter 14 Reliability Pillar |
|
|
241 | (10) |
|
|
242 | (1) |
|
|
242 | (3) |
|
Failure Management for ML |
|
|
245 | (1) |
|
|
246 | (1) |
|
|
246 | (1) |
|
|
247 | (4) |
|
Chapter 15 Performance Efficiency Pillar for ML |
|
|
251 | (10) |
|
Performance Efficiency for ML on AWS |
|
|
252 | (5) |
|
|
253 | (1) |
|
|
254 | (1) |
|
|
255 | (1) |
|
|
256 | (1) |
|
|
257 | (1) |
|
|
257 | (1) |
|
|
258 | (3) |
|
Chapter 16 Cost Optimization Pillar for ML |
|
|
261 | (10) |
|
|
262 | (1) |
|
Cost Optimization for ML Workloads |
|
|
263 | (3) |
|
|
263 | (1) |
|
Common Cost Optimization Strategies |
|
|
264 | (2) |
|
|
266 | (1) |
|
|
266 | (1) |
|
|
267 | (4) |
|
Chapter 17 Recent Updates in the AWS AI/ML Stack |
|
|
271 | (16) |
|
New Services and Features Related to AI Services |
|
|
272 | (7) |
|
|
272 | (3) |
|
New Features of Existing Services |
|
|
275 | (4) |
|
New Features Related to Amazon SageMaker |
|
|
279 | (6) |
|
|
279 | (1) |
|
Amazon SageMaker Data Wrangler |
|
|
279 | (1) |
|
Amazon SageMaker Feature Store |
|
|
280 | (1) |
|
|
281 | (1) |
|
Amazon SageMaker Autopilot |
|
|
282 | (1) |
|
Amazon SageMaker JumpStart |
|
|
283 | (1) |
|
Amazon SageMaker Debugger |
|
|
283 | (1) |
|
Amazon SageMaker Distributed Training Libraries |
|
|
284 | (1) |
|
Amazon SageMaker Pipelines and Projects |
|
|
284 | (1) |
|
Amazon SageMaker Model Monitor |
|
|
284 | (1) |
|
Amazon SageMaker Edge Manager |
|
|
285 | (1) |
|
Amazon SageMaker Asynchronous Inference |
|
|
285 | (1) |
|
|
285 | (1) |
|
|
285 | (2) |
|
Appendix Answers to the Review Questions |
|
|
287 | (16) |
|
Chapter 1 AWS AI ML Stack |
|
|
288 | (1) |
|
Chapter 2 Supporting Services from the AWS Stack |
|
|
289 | (1) |
|
Chapter 3 Business Understanding |
|
|
290 | (1) |
|
Chapter 4 Framing a Machine Learning Problem |
|
|
291 | (1) |
|
Chapter 5 Data Collection |
|
|
291 | (1) |
|
Chapter 6 Data Preparation |
|
|
292 | (1) |
|
Chapter 7 Feature Engineering |
|
|
293 | (1) |
|
|
294 | (1) |
|
Chapter 9 Model Evaluation |
|
|
295 | (1) |
|
Chapter 10 Model Deployment and Inference |
|
|
295 | (1) |
|
Chapter 11 Application Integration |
|
|
296 | (1) |
|
Chapter 12 Operational Excellence Pillar for ML |
|
|
297 | (1) |
|
Chapter 13 Security Pillar |
|
|
298 | (1) |
|
Chapter 14 Reliability Pillar |
|
|
298 | (1) |
|
Chapter 15 Performance Efficiency Pillar for ML |
|
|
299 | (1) |
|
Chapter 16 Cost Optimization Pillar for ML |
|
|
300 | (3) |
Index |
|
303 | |