Preface |
|
xv | |
Terminology |
|
xvii | |
Acknowledgements |
|
xix | |
|
|
1 | (11) |
|
1.1 The composition of an organism |
|
|
1 | (3) |
|
1.1.1 A simple model of an organism |
|
|
1 | (2) |
|
1.1.2 Composition of cells |
|
|
3 | (1) |
|
1.2 Homeostasis, physiology, and pathology |
|
|
4 | (1) |
|
|
4 | (1) |
|
1.4 Site, sample, state, and environment |
|
|
4 | (1) |
|
1.5 Abundance and expression - protein and proteome profiles |
|
|
5 | (1) |
|
1.5.1 The protein dynamic range |
|
|
6 | (1) |
|
1.6 The importance of exact specification of sites and states |
|
|
6 | (2) |
|
1.6.1 Biological features |
|
|
7 | (1) |
|
1.6.2 Physiological and pathological features |
|
|
7 | (1) |
|
|
7 | (1) |
|
|
7 | (1) |
|
|
7 | (1) |
|
|
8 | (1) |
|
1.7 Relative and absolute quantification |
|
|
8 | (1) |
|
1.7.1 Relative quantification |
|
|
8 | (1) |
|
1.7.2 Absolute quantification |
|
|
9 | (1) |
|
1.8 In vivo and in vitro experiments |
|
|
9 | (1) |
|
1.9 Goals for quantitative protein experiments |
|
|
10 | (1) |
|
|
10 | (2) |
|
2 Correlations of mRNA and protein abundances |
|
|
12 | (10) |
|
2.1 Investigating the correlation |
|
|
12 | (2) |
|
|
14 | (1) |
|
2.3 Main results from experiments |
|
|
15 | (1) |
|
2.4 The ideal case for mRNA-protein comparison |
|
|
16 | (1) |
|
2.5 Exploring correlation across genes |
|
|
17 | (1) |
|
2.6 Exploring correlation within one gene |
|
|
18 | (1) |
|
2.7 Correlation across subsets |
|
|
18 | (1) |
|
2.8 Comparing mRNA and protein abundances across genes from two situations |
|
|
19 | (1) |
|
|
20 | (1) |
|
|
21 | (1) |
|
3 Protein level quantification |
|
|
22 | (5) |
|
|
22 | (1) |
|
3.1.1 Comparing results from different experiments - DIGE |
|
|
23 | (1) |
|
|
23 | (2) |
|
|
24 | (1) |
|
|
25 | (1) |
|
3.2.3 Detection of binding molecules |
|
|
25 | (1) |
|
3.2.4 Analysis of protein array readouts |
|
|
25 | (1) |
|
|
25 | (1) |
|
3.4 ELISA - Enzyme-Linked Immunosorbent Assay |
|
|
26 | (1) |
|
|
26 | (1) |
|
4 Mass spectrometry and protein identification |
|
|
27 | (21) |
|
|
27 | (5) |
|
4.1.1 Peptide mass fingerprinting (PMF) |
|
|
28 | (1) |
|
|
29 | (1) |
|
|
29 | (3) |
|
4.2 Isotope composition of peptides |
|
|
32 | (4) |
|
4.2.1 Predicting the isotope intensity distribution |
|
|
34 | (1) |
|
4.2.2 Estimating the charge |
|
|
34 | (1) |
|
4.2.3 Revealing isotope patterns |
|
|
34 | (2) |
|
4.3 Presenting the intensities - the spectra |
|
|
36 | (2) |
|
4.4 Peak intensity calculation |
|
|
38 | (1) |
|
4.5 Peptide identification by MS/MS spectra |
|
|
38 | (4) |
|
4.5.1 Spectral comparison |
|
|
41 | (1) |
|
4.5.2 Sequential comparison |
|
|
41 | (1) |
|
|
42 | (1) |
|
4.5.4 Statistical significance |
|
|
42 | (1) |
|
4.6 The protein inference problem |
|
|
42 | (2) |
|
4.6.1 Determining maximal explanatory sets |
|
|
44 | (1) |
|
4.6.2 Determining minimal explanatory sets |
|
|
44 | (1) |
|
4.7 False discovery rate for the identifications |
|
|
44 | (2) |
|
4.7.1 Constructing the decoy database |
|
|
45 | (1) |
|
4.7.2 Separate or composite search |
|
|
46 | (1) |
|
|
46 | (1) |
|
|
47 | (1) |
|
5 Protein quantification by mass spectrometry |
|
|
48 | (27) |
|
5.1 Situations, protein, and peptide variants |
|
|
48 | (1) |
|
|
48 | (1) |
|
5.1.2 Protein variants - peptide variants |
|
|
48 | (1) |
|
|
49 | (1) |
|
5.3 Run - experiment - project |
|
|
50 | (4) |
|
|
50 | (1) |
|
|
51 | (1) |
|
5.3.3 Quantification experiment |
|
|
52 | (1) |
|
5.3.4 Quantification project |
|
|
52 | (1) |
|
5.3.5 Planning quantification experiments |
|
|
52 | (2) |
|
5.4 Comparing quantification approaches/methods |
|
|
54 | (3) |
|
|
54 | (1) |
|
|
55 | (1) |
|
5.4.3 Repeatability and reproducibility |
|
|
56 | (1) |
|
5.4.4 Dynamic range and linear dynamic range |
|
|
56 | (1) |
|
5.4.5 Limit of blank - LOB |
|
|
56 | (1) |
|
5.4.6 Limit of detection - LOD |
|
|
57 | (1) |
|
5.4.7 Limit of quantification - LOQ |
|
|
57 | (1) |
|
|
57 | (1) |
|
|
57 | (1) |
|
5.5 Classification of approaches for quantification using LC-MS/MS |
|
|
57 | (3) |
|
5.5.1 Discovery or targeted protein quantification |
|
|
58 | (1) |
|
5.5.2 Label based vs. label free quantification |
|
|
59 | (1) |
|
5.5.3 Abundance determination - ion current vs. peptide identification |
|
|
60 | (1) |
|
|
60 | (1) |
|
5.6 The peptide (occurrence) space |
|
|
60 | (2) |
|
|
62 | (1) |
|
5.8 From peptides to protein abundances |
|
|
62 | (5) |
|
5.8.1 Combined single abundance from single abundances |
|
|
64 | (1) |
|
5.8.2 Relative abundance from single abundances |
|
|
65 | (1) |
|
5.8.3 Combined relative abundance from relative abundances |
|
|
66 | (1) |
|
5.9 Protein inference and protein abundance calculation |
|
|
67 | (3) |
|
5.9.1 Use of the peptides in protein abundance calculation |
|
|
67 | (1) |
|
5.9.2 Classifying the proteins |
|
|
68 | (1) |
|
5.9.3 Can shared peptides be used for quantification? |
|
|
68 | (2) |
|
|
70 | (1) |
|
5.11 Assumptions for relative quantification |
|
|
70 | (1) |
|
5.12 Analysis for differentially abundant proteins |
|
|
71 | (1) |
|
5.13 Normalization of data |
|
|
71 | (1) |
|
|
72 | (2) |
|
|
74 | (1) |
|
6 Statistical normalization |
|
|
75 | (21) |
|
6.1 Some illustrative examples |
|
|
75 | (1) |
|
6.2 Non-normally distributed populations |
|
|
76 | (2) |
|
6.2.1 Skewed distributions |
|
|
76 | (1) |
|
6.2.2 Measures of skewness |
|
|
76 | (1) |
|
6.2.3 Steepness of the peak - kurtosis |
|
|
77 | (1) |
|
6.3 Testing for normality |
|
|
78 | (4) |
|
6.3.1 Normal probability plot |
|
|
79 | (2) |
|
6.3.2 Some test statistics for normality testing |
|
|
81 | (1) |
|
|
82 | (8) |
|
6.4.1 Test statistics for the identification of a single outlier |
|
|
83 | (3) |
|
6.4.2 Testing for more than one outlier |
|
|
86 | (2) |
|
6.4.3 Robust statistics for mean and standard deviation |
|
|
88 | (1) |
|
6.4.4 Outliers in regression |
|
|
89 | (1) |
|
|
90 | (1) |
|
6.6 Normalization and logarithmic transformation |
|
|
90 | (4) |
|
6.6.1 The logarithmic function |
|
|
90 | (1) |
|
|
91 | (1) |
|
6.6.3 Logarithmic normalization of peptide/protein ratios |
|
|
91 | (1) |
|
6.6.4 Pitfalls of logarithmic transformations |
|
|
92 | (1) |
|
6.6.5 Variance stabilization by logarithmic transformation |
|
|
92 | (1) |
|
6.6.6 Logarithmic scale for presentation |
|
|
93 | (1) |
|
|
94 | (1) |
|
|
95 | (1) |
|
7 Experimental normalization |
|
|
96 | (14) |
|
7.1 Sources of variation and level of normalization |
|
|
96 | (2) |
|
7.2 Spectral normalization |
|
|
98 | (5) |
|
7.2.1 Scale based normalization |
|
|
99 | (2) |
|
7.2.2 Rank based normalization |
|
|
101 | (1) |
|
7.2.3 Combining scale based and rank based normalization |
|
|
101 | (1) |
|
7.2.4 Reproducibility of the normalization methods |
|
|
102 | (1) |
|
7.3 Normalization at the peptide and protein level |
|
|
103 | (1) |
|
7.4 Normalizing using sum, mean, and median |
|
|
104 | (1) |
|
7.5 MA-plot for normalization |
|
|
104 | (2) |
|
7.5.1 Global intensity normalization |
|
|
105 | (1) |
|
7.5.2 Linear regression normalization |
|
|
106 | (1) |
|
7.6 Local regression normalization - LOWESS |
|
|
106 | (1) |
|
7.7 Quantile normalization |
|
|
107 | (1) |
|
|
108 | (1) |
|
|
109 | (1) |
|
|
109 | (1) |
|
|
110 | (19) |
|
8.1 Use of replicates for statistical analysis |
|
|
110 | (1) |
|
8.2 Using a set of proteins for statistical analysis |
|
|
111 | (5) |
|
|
111 | (1) |
|
|
112 | (3) |
|
8.2.3 Fisher-Irwin exact test |
|
|
115 | (1) |
|
|
116 | (2) |
|
8.3.1 Reasons for missing values |
|
|
116 | (2) |
|
8.3.2 Handling missing values |
|
|
118 | (1) |
|
8.4 Prediction and hypothesis testing |
|
|
118 | (3) |
|
|
119 | (1) |
|
|
120 | (1) |
|
8.5 Statistical significance for multiple testing |
|
|
121 | (6) |
|
8.5.1 False positive rate control |
|
|
122 | (1) |
|
8.5.2 False discovery rate control |
|
|
123 | (4) |
|
|
127 | (1) |
|
|
128 | (1) |
|
9 Label based quantification |
|
|
129 | (9) |
|
9.1 Labeling techniques for label based quantification |
|
|
129 | (1) |
|
|
130 | (1) |
|
9.3 Labels and labeling properties |
|
|
130 | (2) |
|
9.3.1 Quantification level |
|
|
130 | (1) |
|
9.3.2 Label incorporation |
|
|
131 | (1) |
|
9.3.3 Incorporation level |
|
|
131 | (1) |
|
9.3.4 Number of compared samples |
|
|
132 | (1) |
|
|
132 | (1) |
|
9.4 Experimental requirements |
|
|
132 | (1) |
|
9.5 Recognizing corresponding peptide variants |
|
|
133 | (2) |
|
9.5.1 Recognizing peptide variants in MS spectra |
|
|
133 | (1) |
|
9.5.2 Recognizing peptide variants in MS/MS spectra |
|
|
134 | (1) |
|
9.6 Reference free vs. reference based |
|
|
135 | (1) |
|
9.6.1 Reference free quantification |
|
|
135 | (1) |
|
9.6.2 Reference based quantification |
|
|
135 | (1) |
|
9.7 Labeling considerations |
|
|
136 | (1) |
|
|
136 | (1) |
|
|
137 | (1) |
|
10 Reporter based MS/MS quantification |
|
|
138 | (17) |
|
|
138 | (2) |
|
|
140 | (5) |
|
|
141 | (2) |
|
10.2.2 Reporter ion intensities |
|
|
143 | (1) |
|
|
144 | (1) |
|
10.3 TMT - Tandem Mass Tag |
|
|
145 | (1) |
|
10.4 Reporter based quantification runs |
|
|
145 | (1) |
|
10.5 Identification and quantification |
|
|
145 | (2) |
|
|
147 | (1) |
|
10.7 Reporter based quantification experiments |
|
|
147 | (5) |
|
10.7.1 Normalization across LC-MS/MS runs - use of a reference sample |
|
|
147 | (2) |
|
10.7.2 Normalizing within an LC-MS/MS run |
|
|
149 | (1) |
|
10.7.3 From reporter intensities to protein abundances |
|
|
149 | (1) |
|
10.7.4 Finding differentially abundant proteins |
|
|
150 | (1) |
|
10.7.5 Distributing the replicates on the quantification runs |
|
|
151 | (1) |
|
|
152 | (1) |
|
|
152 | (1) |
|
|
153 | (2) |
|
11 Fragment based MS/MS quantification |
|
|
155 | (5) |
|
|
155 | (2) |
|
|
157 | (1) |
|
11.3 Peptide and protein quantification |
|
|
158 | (1) |
|
|
158 | (1) |
|
|
159 | (1) |
|
12 Label based quantification by MS spectra |
|
|
160 | (25) |
|
12.1 Different labeling techniques |
|
|
160 | (6) |
|
12.1.1 Metabolic labeling - SILAC |
|
|
160 | (2) |
|
|
162 | (3) |
|
12.1.3 Enzymatic labeling - 180 |
|
|
165 | (1) |
|
|
166 | (1) |
|
|
167 | (2) |
|
|
167 | (2) |
|
12.3.2 Reliability of HL-pairs |
|
|
169 | (1) |
|
12.3.3 Reliable protein results |
|
|
169 | (1) |
|
12.4 The MaxQuant procedure |
|
|
169 | (14) |
|
12.4.1 Recognize HL-pairs |
|
|
169 | (7) |
|
12.4.2 Estimate HL-ratios |
|
|
176 | (1) |
|
12.4.3 Identify HL-pairs by database search |
|
|
177 | (4) |
|
12.4.4 Infer protein data |
|
|
181 | (2) |
|
|
183 | (1) |
|
|
184 | (1) |
|
13 Label free quantification by MS spectra |
|
|
185 | (20) |
|
13.1 An ideal case - two protein samples |
|
|
185 | (1) |
|
|
186 | (1) |
|
|
187 | (1) |
|
|
187 | (1) |
|
|
187 | (1) |
|
13.5 The quantification process |
|
|
188 | (1) |
|
|
189 | (2) |
|
13.7 Pair-wise retention time correction |
|
|
191 | (2) |
|
13.7.1 Determining potentially corresponding forms |
|
|
191 | (1) |
|
13.7.2 Linear corrections |
|
|
192 | (1) |
|
13.7.3 Nonlinear corrections |
|
|
192 | (1) |
|
13.8 Approaches for form tuple detection |
|
|
193 | (1) |
|
|
193 | (3) |
|
13.9.1 Distance between forms |
|
|
194 | (1) |
|
13.9.2 Finding an optimal alignment |
|
|
195 | (1) |
|
13.10 Using a reference run for alignment |
|
|
196 | (1) |
|
13.11 Complete pair-wise alignment |
|
|
197 | (1) |
|
13.12 Hierarchical progressive alignment |
|
|
197 | (3) |
|
13.12.1 Measuring the similarity or the distance of two runs |
|
|
198 | (1) |
|
13.12.2 Constructing static guide trees |
|
|
198 | (1) |
|
13.12.3 Constructing dynamic guide trees |
|
|
199 | (1) |
|
13.12.4 Aligning subalignments |
|
|
199 | (1) |
|
|
199 | (1) |
|
13.13 Simultaneous iterative alignment |
|
|
200 | (2) |
|
13.13.1 Constructing the initial alignment in XCMS |
|
|
200 | (1) |
|
13.13.2 Changing the initial alignment |
|
|
201 | (1) |
|
13.14 The end result and further analysis |
|
|
202 | (1) |
|
|
202 | (2) |
|
13.16 Bibliographic notes |
|
|
204 | (1) |
|
14 Label free quantification by MS/MS spectra |
|
|
205 | (13) |
|
14.1 Abundance measurements |
|
|
205 | (2) |
|
|
207 | (1) |
|
|
207 | (1) |
|
14.4 Methods for single abundance calculation |
|
|
207 | (3) |
|
|
208 | (1) |
|
|
208 | (1) |
|
|
209 | (1) |
|
|
209 | (1) |
|
14.5 Methods for relative abundance calculation |
|
|
210 | (2) |
|
|
210 | (1) |
|
|
210 | (1) |
|
|
211 | (1) |
|
|
212 | (1) |
|
14.6.1 An analysis by Griffin |
|
|
212 | (1) |
|
14.6.2 An analysis by Colaert |
|
|
213 | (1) |
|
14.7 Improving the reliability of spectral count quantification |
|
|
213 | (1) |
|
14.8 Handling shared peptides |
|
|
214 | (1) |
|
14.9 Statistical analysis |
|
|
215 | (1) |
|
|
215 | (1) |
|
14.11 Bibliographic notes |
|
|
216 | (2) |
|
15 Targeted quantification - Selected Reaction Monitoring |
|
|
218 | (17) |
|
15.1 Selected Reaction Monitoring - the concept |
|
|
218 | (1) |
|
15.2 A suitable instrument |
|
|
219 | (1) |
|
|
220 | (4) |
|
15.3.1 Sensitivity and accuracy |
|
|
222 | (2) |
|
15.4 Label free and label based quantification |
|
|
224 | (3) |
|
15.4.1 Label free SRM based quantification |
|
|
224 | (1) |
|
15.4.2 Label based SRM based quantification |
|
|
225 | (2) |
|
15.5 Requirements for SRM transitions |
|
|
227 | (2) |
|
15.5.1 Requirements for the peptides |
|
|
227 | (1) |
|
15.5.2 Requirements for the fragmentions |
|
|
228 | (1) |
|
15.6 Finding optimal transitions |
|
|
229 | (1) |
|
15.7 Validating transitions |
|
|
230 | (2) |
|
|
230 | (1) |
|
15.7.2 Determining retention time |
|
|
231 | (1) |
|
15.7.3 Limit of detection/quantification |
|
|
231 | (1) |
|
15.7.4 Dealing with low abundant proteins |
|
|
231 | (1) |
|
15.7.5 Checking for interference |
|
|
232 | (1) |
|
|
232 | (1) |
|
|
233 | (1) |
|
15.10 Bibliographic notes |
|
|
234 | (1) |
|
16 Absolute quantification |
|
|
235 | (9) |
|
16.1 Performing absolute quantification |
|
|
235 | (1) |
|
16.1.1 Linear dependency between the calculated and the real abundances |
|
|
236 | (1) |
|
16.2 Label based absolute quantification |
|
|
236 | (3) |
|
16.2.1 Stable isotope-labeled peptide standards |
|
|
237 | (1) |
|
16.2.2 Stable isotope-labeled concatenated peptide standards |
|
|
238 | (1) |
|
16.2.3 Stable isotope-labeled intact protein standards |
|
|
239 | (1) |
|
16.3 Label free absolute quantification |
|
|
239 | (3) |
|
16.3.1 Quantification by MS spectra |
|
|
239 | (2) |
|
16.3.2 Quantification by the number of MS/MS spectra |
|
|
241 | (1) |
|
|
242 | (1) |
|
|
242 | (2) |
|
17 Quantification of post-translational modifications |
|
|
244 | (10) |
|
17.1 PTM and mass spectrometry |
|
|
244 | (1) |
|
|
245 | (1) |
|
17.3 Absolute modification degree |
|
|
246 | (4) |
|
17.3.1 Reversing the modification |
|
|
246 | (2) |
|
17.3.2 Use of two standards |
|
|
248 | (1) |
|
17.3.3 Label free modification degree analysis |
|
|
249 | (1) |
|
17.4 Relative modification degree |
|
|
250 | (1) |
|
17.5 Discovery based modification stoichiometry |
|
|
251 | (2) |
|
17.5.1 Separate LC-MS/MS experiments for modified and unmodified peptides |
|
|
251 | (1) |
|
17.5.2 Common LC-MS/MS experiment for modified and unmodified peptides |
|
|
252 | (1) |
|
17.5.3 Reliable results and significant differences |
|
|
252 | (1) |
|
|
253 | (1) |
|
|
253 | (1) |
|
|
254 | (5) |
|
18.1 Evaluation of potential biomarkers |
|
|
254 | (3) |
|
18.1.1 Taking disease prevalence into account |
|
|
255 | (2) |
|
18.2 Evaluating threshold values for biomarkers |
|
|
257 | (1) |
|
|
258 | (1) |
|
|
258 | (1) |
|
19 Standards and databases |
|
|
259 | (5) |
|
19.1 Standard data formats for (quantitative) proteomics |
|
|
259 | (3) |
|
19.1.1 Controlled vocabularies (CVs) |
|
|
260 | (1) |
|
19.1.2 Benefits of using CV terms to annotate metadata |
|
|
260 | (1) |
|
19.1.3 A standard for quantitative proteomics data |
|
|
261 | (1) |
|
|
262 | (1) |
|
19.2 Databases for proteomics data |
|
|
262 | (1) |
|
|
263 | (1) |
|
20 Appendix A: Statistics |
|
|
264 | (28) |
|
20.1 Samples, populations, and statistics |
|
|
264 | (1) |
|
20.2 Population parameter estimation |
|
|
265 | (2) |
|
20.2.1 Estimating the mean of a population |
|
|
266 | (1) |
|
|
267 | (1) |
|
20.3.1 Two types of errors |
|
|
268 | (1) |
|
20.4 Performing the test - test statistics and p-values |
|
|
268 | (3) |
|
20.4.1 Parametric test statistics |
|
|
269 | (1) |
|
20.4.2 Nonparametric test statistics |
|
|
269 | (1) |
|
20.4.3 Confidence intervals and hypothesis testing |
|
|
270 | (1) |
|
20.5 Comparing means of populations |
|
|
271 | (5) |
|
20.5.1 Analyzing the mean of a single population |
|
|
271 | (1) |
|
20.5.2 Comparing the means from two populations |
|
|
272 | (3) |
|
20.5.3 Comparing means of paired populations |
|
|
275 | (1) |
|
20.5.4 Multiple populations |
|
|
275 | (1) |
|
|
276 | (1) |
|
|
276 | (2) |
|
20.6.1 Testing the variance of a single population |
|
|
276 | (1) |
|
20.6.2 Testing the variances of two populations |
|
|
277 | (1) |
|
20.7 Percentiles and quantiles |
|
|
278 | (2) |
|
20.7.1 A straightforward method for estimating the percentiles |
|
|
279 | (1) |
|
|
279 | (1) |
|
|
280 | (1) |
|
|
280 | (7) |
|
20.8.1 Pearson's product-moment correlation coefficient |
|
|
283 | (2) |
|
20.8.2 Spearman's rank correlation coefficient |
|
|
285 | (1) |
|
|
286 | (1) |
|
|
287 | (3) |
|
|
288 | (1) |
|
20.9.2 Relation between Pearson's correlation coefficient and the regression parameters |
|
|
289 | (1) |
|
20.10 Types of values and variables |
|
|
290 | (2) |
|
21 Appendix B: Clustering and discriminant analysis |
|
|
292 | (21) |
|
|
292 | (11) |
|
21.1.1 Distances and similarities |
|
|
293 | (1) |
|
|
294 | (1) |
|
21.1.3 Similarity measures |
|
|
295 | (1) |
|
21.1.4 Distances between an object and a class |
|
|
295 | (1) |
|
21.1.5 Distances between two classes |
|
|
296 | (1) |
|
|
297 | (1) |
|
21.1.7 Clustering approaches |
|
|
297 | (1) |
|
21.1.8 Sequential clustering |
|
|
298 | (2) |
|
21.1.9 Hierarchical clustering |
|
|
300 | (3) |
|
21.2 Discriminant analysis |
|
|
303 | (9) |
|
21.2.1 Step-wise feature selection |
|
|
304 | (3) |
|
21.2.2 Linear discriminant analysis using original features |
|
|
307 | (2) |
|
21.2.3 Canonical discriminant analysis |
|
|
309 | (3) |
|
|
312 | (1) |
Bibliography |
|
313 | (14) |
Index |
|
327 | |