Preface |
|
xi | |
Acknowledgments |
|
xii | |
Notation |
|
xiii | |
|
|
1 | (4) |
|
|
1 | (1) |
|
1.2 Structure and outline |
|
|
2 | (1) |
|
|
3 | (2) |
|
|
4 | (1) |
|
|
5 | (38) |
|
2.1 Convexity and computational complexity |
|
|
5 | (3) |
|
|
8 | (10) |
|
2.2.1 Linear and quadratic programming |
|
|
8 | (1) |
|
|
9 | (4) |
|
2.2.3 Quadratically constrained programming |
|
|
13 | (2) |
|
2.2.4 Mixed-integer programming |
|
|
15 | (2) |
|
2.2.5 Algorithmic maturity |
|
|
17 | (1) |
|
|
18 | (8) |
|
|
20 | (4) |
|
2.3.2 Detour: graph theory |
|
|
24 | (1) |
|
2.3.3 Preview: How to use a relaxation |
|
|
25 | (1) |
|
2.4 Classical optimization versus metaheuristics |
|
|
26 | (1) |
|
2.5 Power system modeling |
|
|
27 | (10) |
|
2.5.1 Voltage, current, and power in steady-state |
|
|
28 | (3) |
|
2.5.2 Balanced three-phase operation |
|
|
31 | (3) |
|
2.5.3 Generator and load modeling |
|
|
34 | (2) |
|
2.5.4 The per unit system |
|
|
36 | (1) |
|
|
37 | (6) |
|
|
39 | (4) |
|
|
43 | (38) |
|
|
44 | (4) |
|
3.1.1 Nonlinear programming approaches |
|
|
47 | (1) |
|
3.2 Linear approximations in voltage-polar coordinates |
|
|
48 | (3) |
|
3.2.1 Linearized power flow |
|
|
48 | (1) |
|
3.2.2 Decoupled power flow |
|
|
49 | (1) |
|
|
50 | (1) |
|
|
51 | (16) |
|
3.3.1 Exactness in radial networks |
|
|
55 | (3) |
|
3.3.2 Real coordinate systems |
|
|
58 | (4) |
|
|
62 | (3) |
|
|
65 | (2) |
|
|
67 | (3) |
|
|
67 | (2) |
|
3.4.2 Linearized load flow |
|
|
69 | (1) |
|
|
70 | (5) |
|
3.5.1 Direct current networks |
|
|
70 | (1) |
|
3.5.2 Reactive power capability curves |
|
|
71 | (1) |
|
3.5.3 Nonconvex generator cost curves |
|
|
72 | (2) |
|
3.5.4 Polyhedral relaxation of the second-order cone |
|
|
74 | (1) |
|
|
75 | (6) |
|
|
77 | (4) |
|
|
81 | (31) |
|
4.1 Multi-period optimal power flow |
|
|
81 | (9) |
|
|
83 | (1) |
|
4.1.2 Energy storage and inventory control |
|
|
84 | (5) |
|
4.1.3 Implementation via model predictive control |
|
|
89 | (1) |
|
4.2 Stability and control |
|
|
90 | (6) |
|
|
91 | (3) |
|
4.2.2 Linear quadratic regulation |
|
|
94 | (2) |
|
|
96 | (5) |
|
|
97 | (1) |
|
|
98 | (3) |
|
|
101 | (6) |
|
4.4.1 Radiality constraints |
|
|
102 | (1) |
|
4.4.2 Power flow and objectives |
|
|
103 | (3) |
|
4.4.3 Transmission switching |
|
|
106 | (1) |
|
|
107 | (5) |
|
|
108 | (4) |
|
5 Infrastructure planning |
|
|
112 | (20) |
|
5.1 Nodal placement and sizing |
|
|
113 | (7) |
|
5.1.1 Problem types and greedy algorithms |
|
|
114 | (2) |
|
|
116 | (2) |
|
|
118 | (2) |
|
|
120 | (1) |
|
5.2 Transmission expansion |
|
|
120 | (9) |
|
|
121 | (2) |
|
|
123 | (2) |
|
5.2.3 Branch flow approximation |
|
|
125 | (1) |
|
|
126 | (2) |
|
|
128 | (1) |
|
|
129 | (3) |
|
|
130 | (2) |
|
|
132 | (52) |
|
|
133 | (11) |
|
|
133 | (6) |
|
6.1.2 Pricing and the welfare theorems |
|
|
139 | (2) |
|
|
141 | (3) |
|
|
144 | (23) |
|
|
148 | (9) |
|
6.2.2 Multi-period and dynamic pricing |
|
|
157 | (3) |
|
6.2.3 Transmission cost allocation |
|
|
160 | (6) |
|
6.2.4 Pricing under nonconvexity |
|
|
166 | (1) |
|
|
167 | (9) |
|
6.3.1 Supply function equilibrium |
|
|
170 | (2) |
|
6.3.2 Complementarity models |
|
|
172 | (1) |
|
6.3.3 Capacitated price competition |
|
|
173 | (3) |
|
|
176 | (8) |
|
|
178 | (6) |
|
|
184 | |
|
|
184 | (2) |
|
7.1.1 Stochastic programming |
|
|
184 | (1) |
|
7.1.2 Robust optimization |
|
|
185 | (1) |
|
7.2 Decentralization and distributed optimization |
|
|
186 | (2) |
|
|
188 | |
|
|
188 | (1) |
|
|
189 | (1) |
|
|
190 | (3) |
|
|
193 | |