Update cookies preferences

E-book: Hands-on Guide to Apache Spark 3: Build Scalable Computing Engines for Batch and Stream Data Processing

  • Format: EPUB+DRM
  • Pub. Date: 05-Jun-2023
  • Publisher: APress
  • Language: eng
  • ISBN-13: 9781484293805
  • Format - EPUB+DRM
  • Price: 67,91 €*
  • * the price is final i.e. no additional discount will apply
  • Add to basket
  • Add to Wishlist
  • This ebook is for personal use only. E-Books are non-refundable.
  • Format: EPUB+DRM
  • Pub. Date: 05-Jun-2023
  • Publisher: APress
  • Language: eng
  • ISBN-13: 9781484293805

DRM restrictions

  • Copying (copy/paste):

    not allowed

  • Printing:

    not allowed

  • Usage:

    Digital Rights Management (DRM)
    The publisher has supplied this book in encrypted form, which means that you need to install free software in order to unlock and read it.  To read this e-book you have to create Adobe ID More info here. Ebook can be read and downloaded up to 6 devices (single user with the same Adobe ID).

    Required software
    To read this ebook on a mobile device (phone or tablet) you'll need to install this free app: PocketBook Reader (iOS / Android)

    To download and read this eBook on a PC or Mac you need Adobe Digital Editions (This is a free app specially developed for eBooks. It's not the same as Adobe Reader, which you probably already have on your computer.)

    You can't read this ebook with Amazon Kindle

Beginning-Intermediate user level

This book explains how to scale Apache Spark 3 to handle massive amounts of data, either via batch or streaming processing. It covers how to use Spark’s structured APIs to perform complex data transformations and analyses you can use to implement end-to-end analytics workflows.
 
This book covers Spark 3's new features, theoretical foundations, and application architecture. The first section introduces the Apache Spark ecosystem as a unified engine for large scale data analytics, and shows you how to run and fine-tune your first application in Spark. The second section centers on batch processing suited to end-of-cycle processing, and data ingestion through files and databases. It explains Spark DataFrame API as well as structured and unstructured data with Apache Spark. The last section deals with scalable, high-throughput, fault-tolerant streaming processing workloads to process real-time data. Here you'll learn about Apache Spark Streaming’s execution model, the architecture of Spark Streaming, monitoring, reporting, and recovering Spark streaming. A full chapter is devoted to future directions for Spark Streaming. With real-world use cases, code snippets, and notebooks hosted on GitHub, this book will give you an understanding of large-scale data analysis concepts--and help you put them to use.

Upon completing this book, you will have the knowledge and skills to seamlessly implement large-scale batch and streaming workloads to analyze real-time data streams with Apache Spark.

What You Will Learn
  • Master the concepts of Spark clusters and batch data processing
  • Understand data ingestion, transformation, and data storage
  • Gain insight into essential stream processing concepts and different streaming architectures
  • Implement streaming jobs and applications with Spark Streaming

Who This Book Is For
Data engineers, data analysts, machine learning engineers, Python and R programmers
Part 1: Apache Spark Batch Data Processing.
Chapter 1: Introduction to
Apache Spark for Large-Scale Data Analytics.
Chapter 2: Getting Started with
Apache Spark.- Chapter 3: Spark Low Level API.- Chapter 4: Spark High-Level
APIs.- Chapter 5: Spark Dataset API and Adaptive Query Execution.- Chapter 6:
Introduction to Apache Spark Streaming.- Chapter 7: Spark Structured
Streaming.- Chapter 8: Streaming Sources and Sinks.- Chapter 9: Event Time
Window Operations and Watermarking.
Chapter 10: Future Directions for Spark
Streaming.- Bibliography.
Alfonso Antolínez García is a senior IT manager with a long professional career serving in several multinational companies such as Bertelsmann SE, Lafarge, and TUI AG. He has been working in the media industry, the building materials industry, and the leisure industry. Alfonso also works as a university professor, teaching artificial intelligence, machine learning, and data science. In his spare time, he writes research papers on artificial intelligence, mathematics, physics, and the applications of information theory to other sciences.