SERIES INTRODUCTION |
|
iii | |
PREFACE |
|
v | |
CONTRIBUTORS |
|
xv | |
ABBREVIATIONS |
|
xix | |
SYMBOLS |
|
xxiii | |
1 A REVIEW OF PARAMETRIC HIGH-RESOLUTION METHODS |
|
1 | (62) |
|
|
|
|
1 | (3) |
|
|
2 | (2) |
|
1.2 Estimation Techniques Using Algebraic Principles |
|
|
4 | (17) |
|
|
5 | (6) |
|
|
11 | (5) |
|
1.2.3 Iterative Quadratic Maximum Likelihood |
|
|
16 | (5) |
|
1.3 Estimation Techniques Using Large-Sample Theorems |
|
|
21 | (20) |
|
1.3.1 Subspace Rotation Invariance - ESPRIT |
|
|
21 | (5) |
|
1.3.2 Subspace Fitting - MUSIC |
|
|
26 | (3) |
|
1.3.3 Maximum Likelihood Methods |
|
|
29 | (8) |
|
1.3.4 Smoothing for Coherent Signals |
|
|
37 | (4) |
|
1.4 Detection Techniques Using a Single Measurement |
|
|
41 | (5) |
|
1.4.1 Effective Singular Values |
|
|
41 | (1) |
|
1.4.2 Noise Significance Level |
|
|
42 | (1) |
|
1.4.3 Least Squares Data Fitting |
|
|
42 | (2) |
|
1.4.4 Variations of Information Theoretic Criteria |
|
|
44 | (2) |
|
1.5 Detection Techniques Using Multiple Measurements |
|
|
46 | (6) |
|
1.5.1 Information Theoretic Criteria |
|
|
46 | (3) |
|
1.5.2 Treating Eigenvalues as the Observations |
|
|
49 | (1) |
|
1.5.3 Thresholding Eigenvalues |
|
|
49 | (1) |
|
|
50 | (2) |
|
|
52 | (1) |
|
|
53 | (10) |
2 ROBUSTNESS ISSUES IN ADAPTIVE BEAMFORMING AND HIGH-RESOLUTION DIRECTION FINDING |
|
63 | (48) |
|
|
|
|
63 | (1) |
|
2.2 Robust Adaptive Beamforming |
|
|
64 | (21) |
|
2.2.1 Required Types of Robustness |
|
|
64 | (2) |
|
2.2.2 Conventional Solutions |
|
|
66 | (4) |
|
2.2.3 Robust Ad-Hoc Solutions |
|
|
70 | (5) |
|
2.2.4 Robust Solutions Based on Optimization of the Worst-Case Performance |
|
|
75 | (7) |
|
|
82 | (3) |
|
2.3 Robust Direction Finding |
|
|
85 | (15) |
|
2.3.1 Required Types of Robustness |
|
|
85 | (1) |
|
2.3.2 Conventional Subspace Methods |
|
|
86 | (3) |
|
2.3.3 Direction Finding in Partly Calibrated Sensor Arrays |
|
|
89 | (9) |
|
|
98 | (2) |
|
|
100 | (1) |
|
|
101 | (10) |
3 PARAFAC TECHNIQUES FOR HIGH-RESOLUTION ARRAY PROCESSING |
|
111 | (40) |
|
Xianggian Liu and Nicholas Sidiropoulos |
|
|
|
|
111 | (5) |
|
3.1.1 Bilinear Decomposition |
|
|
112 | (1) |
|
3.1.2 Trilinear Decomposition |
|
|
113 | (1) |
|
|
114 | (2) |
|
|
116 | (1) |
|
3.2 Uniqueness of Low Rank Decomposition |
|
|
116 | (4) |
|
|
116 | (2) |
|
3.2.2 Sufficient Conditions |
|
|
118 | (1) |
|
3.2.3 Necessary Conditions |
|
|
119 | (1) |
|
3.3 Algorithms for Low-Rank Decomposition |
|
|
120 | (1) |
|
3.3.1 Trilinear ALS (TALS) |
|
|
120 | (1) |
|
3.3.2 Quadrilinear ALS (QALS) |
|
|
120 | (1) |
|
3.4 Application in Multiple Invariance Sensor Array Processing (MI-SAP) |
|
|
121 | (5) |
|
|
121 | (3) |
|
3.4.2 Identifiability Results for MI-SAP |
|
|
124 | (1) |
|
|
124 | (2) |
|
3.5 Application in Blind Reception of Frequency Hopped Signals |
|
|
126 | (12) |
|
3.5.1 Frequency Hopped Spread Spectrum Data Model |
|
|
126 | (2) |
|
3.5.2 Hop-free Subset Detection |
|
|
128 | (2) |
|
3.5.3 Direction-of-Arrival Estimation |
|
|
130 | (1) |
|
3.5.4 Single User Tracking |
|
|
131 | (4) |
|
|
135 | (3) |
|
3.6 Joint DOA and Hop Timing Estimation |
|
|
138 | (5) |
|
3.6.1 Another View of the Data Model |
|
|
138 | (2) |
|
3.6.2 The DP-2DHR Algorithm |
|
|
140 | (2) |
|
|
142 | (1) |
|
3.7 Conclusions and Open Problems |
|
|
143 | (4) |
|
|
147 | (4) |
4 HIGH-RESOLUTION NONPARAMETRIC SPECTRAL ANALYSIS: THEORY AND APPLICATIONS |
|
151 | (102) |
|
Erik G. Larsson, Jian Li and Petre Stoica |
|
|
|
|
151 | (1) |
|
4.2 The Spectral Estimation Problem |
|
|
152 | (1) |
|
4.3 Nonparametric Spectral Analysis via Weighted Least-Squares |
|
|
153 | (7) |
|
4.3.1 The Discrete Fourier Transform (DFT) Method |
|
|
156 | (1) |
|
4.3.2 The Averaged Fourier Method |
|
|
156 | (1) |
|
|
156 | (1) |
|
|
157 | (1) |
|
4.3.5 MMSE Spectral Estimation |
|
|
158 | (2) |
|
4.4 Matched-Filterbank Interpretations |
|
|
160 | (2) |
|
4.4.1 DFT and Averaged DFT |
|
|
161 | (1) |
|
|
161 | (1) |
|
|
162 | (1) |
|
4.5 Extensions to Two-Dimensional Data |
|
|
162 | (3) |
|
4.5.1 Representation of Two-dimensional Filterbanks |
|
|
164 | (1) |
|
4.5.2 Filterbank Interpretations of Two-Dimensional Estimators |
|
|
164 | (1) |
|
4.6 Forward-Backward Averaging |
|
|
165 | (3) |
|
4.6.1 FB Averaging of the Covariance Matrices |
|
|
165 | (2) |
|
4.6.2 Filterbank Interpretation of FB Averaged Estimators |
|
|
167 | (1) |
|
|
168 | (3) |
|
4.7.1 Large-Sample Analysis |
|
|
168 | (1) |
|
|
169 | (2) |
|
|
171 | (1) |
|
4.8 Fast Implementations of Capon and APES |
|
|
171 | (5) |
|
4.8.1 Some Results on Fast Computation |
|
|
172 | (3) |
|
4.8.2 Fast Implementation |
|
|
175 | (1) |
|
|
176 | (1) |
|
4.9 Performance Examples and Applications of Capon and APES |
|
|
176 | (29) |
|
|
176 | (17) |
|
|
193 | (7) |
|
4.9.3 Synthetic Aperture Radar (SAR) Imaging Examples |
|
|
200 | (5) |
|
4.10 Nonparametric Spectral Analysis of Gapped Data |
|
|
205 | (24) |
|
4.10.1 Spectral Estimation of Gapped Data via WLS |
|
|
207 | (9) |
|
4.10.2 APES for Gapped Data: GAPES |
|
|
216 | (13) |
|
|
229 | (6) |
|
4.11.1 APES and Capon for Real-Valued Data |
|
|
229 | (1) |
|
4.11.2 Combining APES and Capon: CAPES |
|
|
230 | (1) |
|
4.11.3 APES and Capon for Damped Sinusoids |
|
|
230 | (2) |
|
4.11.4 Time-Recursive Implementations of Capon and APES |
|
|
232 | (3) |
|
|
235 | (2) |
|
|
237 | (10) |
|
|
237 | (1) |
|
|
238 | (3) |
|
4.C Fast Matrix-Vector Multiplication |
|
|
241 | (2) |
|
4.D Fast Multiplication of Trigonometric Polynomials |
|
|
243 | (1) |
|
4.E Fast Cholesky Factorization of the Sample Covariance Matrix |
|
|
244 | (3) |
|
|
247 | (6) |
5 MULTIDIMENSIONAL HIGH-RESOLUTION PARAMETER ESTIMATION WITH APPLICATIONS TO CHANNEL SOUNDING |
|
253 | (86) |
|
Martin Haardt, Reiner S. Thoma, and Andreas Richter |
|
|
|
|
253 | (5) |
|
5.2 Multidimensional Data Model |
|
|
258 | (9) |
|
5.2.1 R-Dimensional Invariance Structure |
|
|
259 | (2) |
|
5.2.2 Real-Valued Subspace Estimation |
|
|
261 | (6) |
|
5.3 R-D Unitary ESPRIT with Colored Noise |
|
|
267 | (29) |
|
5.3.1 R Transformed Invariance Equations |
|
|
268 | (1) |
|
5.3.2 Covariance Approach |
|
|
269 | (2) |
|
5.3.3 Square-Root Approach |
|
|
271 | (2) |
|
5.3.4 Equivalence of both Subspace Estimates |
|
|
273 | (2) |
|
5.3.5 R-D Smoothing as a Preprocessing Step |
|
|
275 | (1) |
|
5.3.6 Simultaneous Schur Decomposition (SSD) |
|
|
276 | (3) |
|
5.3.7 Estimation of the Path Amplitudes |
|
|
279 | (3) |
|
5.3.8 Truncated Signal Subspace Estimation |
|
|
282 | (3) |
|
5.3.9 Unitary ESPRIT for CUBA Configurations |
|
|
285 | (3) |
|
5.3.10 Antenna Array Calibration |
|
|
288 | (8) |
|
5.4 Multidimensional Propagation Measurements and Parameter Estimation |
|
|
296 | (35) |
|
5.4.1 Wireless Channel Characteristics |
|
|
296 | (2) |
|
5.4.2 Multidimensional Parametric Channel Model |
|
|
298 | (2) |
|
5.4.3 Multidimensional Real-Time Channel Sounding |
|
|
300 | (3) |
|
5.4.4 Antenna Array Architecture Design and Calibration |
|
|
303 | (9) |
|
5.4.5 Multidimensional Joint Channel Parameter Estimation |
|
|
312 | (8) |
|
5.4.6 Measurement Examples |
|
|
320 | (11) |
|
|
331 | (2) |
|
|
333 | (6) |
6 HIGH-RESOLUTION SPACE-TIME SIGNAL PROCESSING FOR RADAR |
|
339 | (54) |
|
Fredrik Athley, Mats Viberg and Jonny Eriksson |
|
|
|
|
339 | (2) |
|
|
341 | (2) |
|
|
343 | (6) |
|
|
343 | (4) |
|
6.3.2 Signal and Noise Models |
|
|
347 | (2) |
|
|
349 | (3) |
|
6.5 Estimation Using the 2-D Model |
|
|
352 | (10) |
|
6.5.1 General CRB for Parameterized Signals |
|
|
352 | (2) |
|
6.5.2 CRB for the 2-D Model |
|
|
354 | (1) |
|
6.5.3 Asymptotic CRB for the 2-D Model |
|
|
355 | (1) |
|
6.5.4 2-D Maximum Likelihood Estimation |
|
|
356 | (3) |
|
6.5.5 2-D Weighted Least Squares |
|
|
359 | (2) |
|
6.5.6 Performance Analysis |
|
|
361 | (1) |
|
6.6 Estimation Using a Decoupled 1-D/1-D Model |
|
|
362 | (5) |
|
6.6.1 CRB for the 1-D Models |
|
|
362 | (1) |
|
6.6.2 Asymptotic CRB for the 1-D Models |
|
|
363 | (1) |
|
6.6.3 1-D/1-D Weighted Least Squares |
|
|
364 | (3) |
|
6.7 Computing the Estimates |
|
|
367 | (2) |
|
|
367 | (1) |
|
6.7.2 Computing Initial Estimates |
|
|
368 | (1) |
|
6.8 Numerical Examples and Simulation Results |
|
|
369 | (8) |
|
|
370 | (1) |
|
6.8.2 Performance of the WLS Estimators |
|
|
370 | (7) |
|
|
377 | (2) |
|
|
379 | (8) |
|
6.A Derivation of the 2-D CRB |
|
|
379 | (3) |
|
6.B Derivation of the Asymptotic 2-D CRBs |
|
|
382 | (5) |
|
|
387 | (6) |
7 EEG/MEG SPATIO-TEMPORAL DIPOLE SOURCE ESTIMATION AND SENSOR ARRAY DESIGN |
|
393 | |
|
Aleksandar Dogandzic and Arye Nehorai |
|
|
|
|
393 | (3) |
|
7.2 Source and Measurement Models |
|
|
396 | (3) |
|
|
396 | (2) |
|
|
398 | (1) |
|
7.3 Maximum Likelihood Estimation |
|
|
399 | (6) |
|
7.3.1 Simultaneous Estimation of the Dipole Parameters and Noise Covariance |
|
|
399 | (3) |
|
7.3.2 Ordinary and Generalized Least Squares |
|
|
402 | (1) |
|
7.3.3 Estimated Generalized Least Squares |
|
|
402 | (1) |
|
|
403 | (2) |
|
7.4 Nonparametric Basis Functions |
|
|
405 | (1) |
|
|
406 | (2) |
|
7.6 Fisher Information Matrix and Cramer-Rao Bound |
|
|
408 | (3) |
|
7.7 Goodness-of-fit Measures |
|
|
411 | (1) |
|
7.8 EEG/MEG Sensor Array Design |
|
|
412 | (3) |
|
7.8.1 Reparametrization Invariance |
|
|
413 | (1) |
|
7.8.2 Relationship between Optimal Array Design and Information Theory |
|
|
414 | (1) |
|
|
415 | (11) |
|
|
426 | (1) |
|
|
427 | (10) |
|
|
427 | (1) |
|
7.B Parameter Identifiability |
|
|
428 | (2) |
|
7.C Asymptotic Properties of the OLS Estimates |
|
|
430 | (1) |
|
|
431 | (1) |
|
7.E Nonparametric Basis Functions |
|
|
432 | (1) |
|
|
433 | (2) |
|
7.G Derivation of the Fisher Information Matrix |
|
|
435 | (2) |
|
|
437 | |