Preface |
|
xiii | |
|
1 The holographic correspondence |
|
|
1 | (40) |
|
1.1 Historical context I: Quantum matter without quasiparticles |
|
|
2 | (2) |
|
1.2 Historical context II: Horizons are dissipative |
|
|
4 | (2) |
|
1.3 Historical context III: The 't Hooft matrix large N limit |
|
|
6 | (2) |
|
1.4 Maldacena's argument and the canonical examples |
|
|
8 | (3) |
|
1.5 The essential dictionary |
|
|
11 | (9) |
|
|
11 | (2) |
|
1.5.2 Fields in AdS spacetime |
|
|
13 | (3) |
|
1.5.3 Simplification in the limit of strong QFT coupling |
|
|
16 | (1) |
|
1.5.4 Expectation values and Green's functions |
|
|
17 | (2) |
|
1.5.5 Bulk gauge symmetries are global symmetries of the dual QFT |
|
|
19 | (1) |
|
1.6 The emergent dimension I: Wilsonian holographic renormalization |
|
|
20 | (7) |
|
1.6.1 Bulk volume divergences and boundary counterterms |
|
|
21 | (1) |
|
1.6.2 Wilsonian renormalization as the Hamilton-Jacobi equation |
|
|
22 | (4) |
|
1.6.3 Multi-trace operators |
|
|
26 | (1) |
|
1.6.4 Geometrized versus non-geometrized low energy degrees of freedom |
|
|
27 | (1) |
|
1.7 The emergent dimension II: Entanglement entropy |
|
|
27 | (6) |
|
1.7.1 Analogy with tensor networks |
|
|
30 | (3) |
|
1.8 Microscopics: Kaluza-Klein modes and consistent truncations |
|
|
33 | (8) |
|
|
37 | (4) |
|
|
41 | (30) |
|
2.1 Condensed matter systems |
|
|
42 | (10) |
|
2.1.1 Antiferromagnetism on the honeycomb lattice |
|
|
46 | (3) |
|
2.1.2 Quadratic band-touching and z # 1 |
|
|
49 | (1) |
|
2.1.3 Emergent gauge fields |
|
|
49 | (3) |
|
2.2 Scale invariant geometries |
|
|
52 | (7) |
|
2.2.1 Dynamic critical exponent z > 1 |
|
|
53 | (3) |
|
2.2.2 Hyperscaling violation |
|
|
56 | (2) |
|
2.2.3 Galilean-invariant `non-relativistic CFTs' |
|
|
58 | (1) |
|
|
59 | (5) |
|
|
59 | (3) |
|
|
62 | (2) |
|
2.4 Theories with a mass gap |
|
|
64 | (7) |
|
|
67 | (4) |
|
3 Quantum critical transport |
|
|
71 | (42) |
|
3.1 Condensed matter systems and questions |
|
|
72 | (3) |
|
3.2 Standard approaches and their limitations |
|
|
75 | (6) |
|
3.2.1 Quasiparticle-based methods |
|
|
75 | (3) |
|
3.2.2 Short time expansion |
|
|
78 | (2) |
|
3.2.3 Quantum Monte Carlo |
|
|
80 | (1) |
|
3.3 Holographic spectral functions |
|
|
81 | (6) |
|
3.3.1 Infalling boundary conditions at the horizon |
|
|
82 | (1) |
|
3.3.2 Example: spectral weight Im GROO(ω) of a large dimension operator |
|
|
83 | (3) |
|
3.3.3 Infalling boundary conditions at zero temperature |
|
|
86 | (1) |
|
3.4 Quantum critical charge dynamics |
|
|
87 | (15) |
|
3.4.1 Conductivity from the dynamics of a bulk Maxwell field |
|
|
87 | (2) |
|
3.4.2 The dc conductivity |
|
|
89 | (2) |
|
|
91 | (2) |
|
3.4.4 σ(ω part I: Critical phases |
|
|
93 | (5) |
|
3.4.5 σ(ω) part II: Critical points and holographic analytic continuation |
|
|
98 | (2) |
|
3.4.6 Particle-vortex duality and Maxwell duality |
|
|
100 | (2) |
|
3.5 Quasinormal modes replace quasiparticles |
|
|
102 | (11) |
|
3.5.1 Physics and computation of quasinormal modes |
|
|
102 | (6) |
|
3.5.2 1/N corrections from quasinormal modes |
|
|
108 | (2) |
|
|
110 | (3) |
|
4 Compressible quantum matter |
|
|
113 | (70) |
|
4.1 Thermodynamics of compressible matter |
|
|
114 | (1) |
|
4.2 Condensed matter systems |
|
|
115 | (10) |
|
4.2.1 Ising-nematic transition |
|
|
118 | (2) |
|
4.2.2 Spin density wave transition |
|
|
120 | (2) |
|
4.2.3 Emergent gauge fields |
|
|
122 | (3) |
|
|
125 | (14) |
|
4.3.1 Einstein-Maxwell theory and AdS2 × Rd (or, z = ∞) |
|
|
126 | (5) |
|
4.3.2 Einstein-Maxwell-dilaton models |
|
|
131 | (3) |
|
4.3.3 Critical compressible phases with diverse z and θ |
|
|
134 | (4) |
|
4.3.4 Anomalous scaling of charge density |
|
|
138 | (1) |
|
4.4 Low energy spectrum of excitations |
|
|
139 | (12) |
|
4.4.1 Spectral weight: zero temperature |
|
|
140 | (5) |
|
4.4.2 Spectral weight: nonzero temperature |
|
|
145 | (5) |
|
4.4.3 Logarithmic violation of the area law of entanglement |
|
|
150 | (1) |
|
4.5 Fermions in the bulk I: `Classical' physics |
|
|
151 | (7) |
|
4.5.1 The holographic dictionary |
|
|
152 | (1) |
|
4.5.2 Fermions in semi-locally critical (z = ∞) backgrounds |
|
|
153 | (2) |
|
4.5.3 Semi-holography: One fermion decaying into a large N bath |
|
|
155 | (3) |
|
4.6 Fermions in the bulk II: Quantum effects |
|
|
158 | (13) |
|
4.6.1 Luttinger's theorem in holography |
|
|
158 | (3) |
|
|
161 | (1) |
|
4.6.2.1 Quantum oscillations |
|
|
161 | (2) |
|
|
163 | (2) |
|
4.6.2.3 Corrections to the conductivity |
|
|
165 | (1) |
|
4.6.3 Endpoint of the near-horizon instability in the fluid approximation |
|
|
166 | (5) |
|
|
171 | (12) |
|
4.7.1 d = 2: Hall transport and duality |
|
|
172 | (4) |
|
4.7.2 d = 3: Chern-Simons term and quantum phase transition |
|
|
176 | (2) |
|
|
178 | (5) |
|
5 Metallic transport without quasiparticles |
|
|
183 | (82) |
|
5.1 Metallic transport with quasiparticles |
|
|
184 | (1) |
|
5.2 The momentum bottleneck |
|
|
184 | (3) |
|
5.3 Thermoelectric conductivity matrix |
|
|
187 | (3) |
|
5.4 Hydrodynamic transport (with momentum) |
|
|
190 | (13) |
|
5.4.1 Relativistic hydrodynamics near quantum criticality |
|
|
191 | (2) |
|
|
193 | (2) |
|
5.4.3 Transport coefficients |
|
|
195 | (4) |
|
5.4.4 Drude weights and conserved quantities |
|
|
199 | (1) |
|
5.4.5 General linearized hydrodynamics |
|
|
200 | (3) |
|
5.5 Weak momentum relaxation I: Inhomogeneous hydrodynamics |
|
|
203 | (4) |
|
5.6 Weak momentum relaxation II: The memory matrix formalism |
|
|
207 | (20) |
|
5.6.1 The Drude conductivities |
|
|
211 | (3) |
|
5.6.2 The incoherent conductivities |
|
|
214 | (3) |
|
5.6.3 Transport in field-theoretic condensed matter models |
|
|
217 | (3) |
|
5.6.4 Transport in holographic compressible phases |
|
|
220 | (3) |
|
5.6.5 From holography to memory matrices |
|
|
223 | (4) |
|
|
227 | (5) |
|
5.7.1 Weyl semimetals: Anomalies and magnetotransport |
|
|
230 | (2) |
|
5.8 Hydrodynamic transport (without momentum) |
|
|
232 | (4) |
|
5.9 Strong momentum relaxation I: `Mean-field' methods |
|
|
236 | (8) |
|
5.9.1 Metal-insulator transitions |
|
|
239 | (2) |
|
|
241 | (1) |
|
5.9.3 Thermoelectric conductivities |
|
|
242 | (2) |
|
5.10 Strong momentum relaxation II: Exact methods |
|
|
244 | (7) |
|
|
244 | (4) |
|
|
248 | (3) |
|
|
251 | (14) |
|
|
253 | (3) |
|
5.11.2 Higher dimensional models |
|
|
256 | (2) |
|
|
258 | (7) |
|
|
265 | (38) |
|
6.1 Condensed matter systems |
|
|
266 | (1) |
|
6.2 The Breitenlohner-Freedman bound and IR instabilities |
|
|
267 | (3) |
|
6.3 Holographic superconductivity |
|
|
270 | (6) |
|
6.3.1 The phase transition |
|
|
270 | (3) |
|
6.3.2 The condensed phase |
|
|
273 | (3) |
|
6.4 Response functions in the ordered phase |
|
|
276 | (10) |
|
|
276 | (4) |
|
6.4.2 Superfluid hydrodynamics |
|
|
280 | (2) |
|
6.4.3 Destruction of long range order in low dimension |
|
|
282 | (2) |
|
|
284 | (2) |
|
6.5 Beyond charged scalars |
|
|
286 | (10) |
|
|
286 | (1) |
|
6.5.1.1 p-wave superconductors from Yang-Mills theory |
|
|
286 | (2) |
|
6.5.1.2 Challenges for d-wave superconductors |
|
|
288 | (2) |
|
6.5.2 Spontaneous breaking of translation symmetry |
|
|
290 | (1) |
|
6.5.2.1 Helical instabilities |
|
|
290 | (2) |
|
|
292 | (2) |
|
6.5.2.3 Crystalline order |
|
|
294 | (1) |
|
|
295 | (1) |
|
6.6 Zero temperature BKT transitions |
|
|
296 | (7) |
|
|
299 | (4) |
|
|
303 | (26) |
|
|
304 | (11) |
|
7.1.1 Microscopics and effective bulk action |
|
|
304 | (3) |
|
|
307 | (1) |
|
7.1.3 Spectral weight at nonzero momentum and `zero sound' |
|
|
308 | (3) |
|
7.1.4 Linear and nonlinear conductivity |
|
|
311 | (3) |
|
7.1.5 Defects and impurities |
|
|
314 | (1) |
|
7.2 Disordered fixed points |
|
|
315 | (3) |
|
7.3 Out of equilibrium I: Quenches |
|
|
318 | (6) |
|
|
319 | (2) |
|
|
321 | (2) |
|
7.3.3 Kibble-Zurek mechanism and beyond |
|
|
323 | (1) |
|
7.4 Out of equilibrium II: Turbulence |
|
|
324 | (5) |
|
|
327 | (2) |
|
8 Connections to experiments |
|
|
329 | (10) |
|
8.1 Probing non-quasiparticle physics |
|
|
330 | (5) |
|
8.1.1 Parametrizing hydrodynamics |
|
|
330 | (1) |
|
8.1.2 Parametrizing low energy spectral weight |
|
|
331 | (1) |
|
8.1.3 Parametrizing quantum criticality |
|
|
332 | (1) |
|
8.1.4 Ordered phases and insulators |
|
|
333 | (1) |
|
8.1.5 Fundamental bounds on transport |
|
|
334 | (1) |
|
8.2 Experimental realizations of strange metals |
|
|
335 | (4) |
|
|
335 | (1) |
|
|
336 | (1) |
|
|
337 | (1) |
|
|
338 | (1) |
Bibliography |
|
339 | (44) |
Index |
|
383 | |