Update cookies preferences

E-book: Holographic Quantum Matter

(Stanford University), (Harvard University), (Stanford University)
  • Format: EPUB+DRM
  • Series: The MIT Press
  • Pub. Date: 16-Mar-2018
  • Publisher: MIT Press
  • Language: eng
  • ISBN-13: 9780262348027
Other books in subject:
  • Format - EPUB+DRM
  • Price: 62,89 €*
  • * the price is final i.e. no additional discount will apply
  • Add to basket
  • Add to Wishlist
  • This ebook is for personal use only. E-Books are non-refundable.
  • Format: EPUB+DRM
  • Series: The MIT Press
  • Pub. Date: 16-Mar-2018
  • Publisher: MIT Press
  • Language: eng
  • ISBN-13: 9780262348027
Other books in subject:

DRM restrictions

  • Copying (copy/paste):

    not allowed

  • Printing:

    not allowed

  • Usage:

    Digital Rights Management (DRM)
    The publisher has supplied this book in encrypted form, which means that you need to install free software in order to unlock and read it.  To read this e-book you have to create Adobe ID More info here. Ebook can be read and downloaded up to 6 devices (single user with the same Adobe ID).

    Required software
    To read this ebook on a mobile device (phone or tablet) you'll need to install this free app: PocketBook Reader (iOS / Android)

    To download and read this eBook on a PC or Mac you need Adobe Digital Editions (This is a free app specially developed for eBooks. It's not the same as Adobe Reader, which you probably already have on your computer.)

    You can't read this ebook with Amazon Kindle

A comprehensive overview of holographic methods in quantum matter, written by pioneers in the field. This book, written by pioneers in the field, offers a comprehensive overview of holographic methods in quantum matter. It covers influential developments in theoretical physics, making the key concepts accessible to researchers and students in both high energy and condensed matter physics. The book provides a unique combination of theoretical and historical context, technical results, extensive references to the literature, and exercises. It will give readers the ability to understand the important problems in the field, both those that have been solved and those that remain unsolved, and will enable them to engage directly with the current literature.The book describes a particular interface between condensed matter physics, gravitational physics, and string and quantum field theory made possible by holographic duality. The chapters cover such topics as the essential workings of the holographic correspondence; strongly interacting quantum matter at a fixed commensurate density; compressible quantum matter with a variable density; transport in quantum matter; the holographic description of symmetry broken phases; and the relevance of the topics covered to experimental challenges in specific quantum materials. Holographic Quantum Matter promises to be the definitive presentation of this material. A comprehensive overview of holographic methods in quantum matter, written by pioneers in the field.
Preface xiii
1 The holographic correspondence
1(40)
1.1 Historical context I: Quantum matter without quasiparticles
2(2)
1.2 Historical context II: Horizons are dissipative
4(2)
1.3 Historical context III: The 't Hooft matrix large N limit
6(2)
1.4 Maldacena's argument and the canonical examples
8(3)
1.5 The essential dictionary
11(9)
1.5.1 The GKPW formula
11(2)
1.5.2 Fields in AdS spacetime
13(3)
1.5.3 Simplification in the limit of strong QFT coupling
16(1)
1.5.4 Expectation values and Green's functions
17(2)
1.5.5 Bulk gauge symmetries are global symmetries of the dual QFT
19(1)
1.6 The emergent dimension I: Wilsonian holographic renormalization
20(7)
1.6.1 Bulk volume divergences and boundary counterterms
21(1)
1.6.2 Wilsonian renormalization as the Hamilton-Jacobi equation
22(4)
1.6.3 Multi-trace operators
26(1)
1.6.4 Geometrized versus non-geometrized low energy degrees of freedom
27(1)
1.7 The emergent dimension II: Entanglement entropy
27(6)
1.7.1 Analogy with tensor networks
30(3)
1.8 Microscopics: Kaluza-Klein modes and consistent truncations
33(8)
Exercises
37(4)
2 Zero density matter
41(30)
2.1 Condensed matter systems
42(10)
2.1.1 Antiferromagnetism on the honeycomb lattice
46(3)
2.1.2 Quadratic band-touching and z # 1
49(1)
2.1.3 Emergent gauge fields
49(3)
2.2 Scale invariant geometries
52(7)
2.2.1 Dynamic critical exponent z > 1
53(3)
2.2.2 Hyperscaling violation
56(2)
2.2.3 Galilean-invariant `non-relativistic CFTs'
58(1)
2.3 Nonzero temperature
59(5)
2.3.1 Thermodynamics
59(3)
2.3.2 Thermal screening
62(2)
2.4 Theories with a mass gap
64(7)
Exercises
67(4)
3 Quantum critical transport
71(42)
3.1 Condensed matter systems and questions
72(3)
3.2 Standard approaches and their limitations
75(6)
3.2.1 Quasiparticle-based methods
75(3)
3.2.2 Short time expansion
78(2)
3.2.3 Quantum Monte Carlo
80(1)
3.3 Holographic spectral functions
81(6)
3.3.1 Infalling boundary conditions at the horizon
82(1)
3.3.2 Example: spectral weight Im GROO(ω) of a large dimension operator
83(3)
3.3.3 Infalling boundary conditions at zero temperature
86(1)
3.4 Quantum critical charge dynamics
87(15)
3.4.1 Conductivity from the dynamics of a bulk Maxwell field
87(2)
3.4.2 The dc conductivity
89(2)
3.4.3 Diffusive limit
91(2)
3.4.4 σ(ω part I: Critical phases
93(5)
3.4.5 σ(ω) part II: Critical points and holographic analytic continuation
98(2)
3.4.6 Particle-vortex duality and Maxwell duality
100(2)
3.5 Quasinormal modes replace quasiparticles
102(11)
3.5.1 Physics and computation of quasinormal modes
102(6)
3.5.2 1/N corrections from quasinormal modes
108(2)
Exercises
110(3)
4 Compressible quantum matter
113(70)
4.1 Thermodynamics of compressible matter
114(1)
4.2 Condensed matter systems
115(10)
4.2.1 Ising-nematic transition
118(2)
4.2.2 Spin density wave transition
120(2)
4.2.3 Emergent gauge fields
122(3)
4.3 Charged horizons
125(14)
4.3.1 Einstein-Maxwell theory and AdS2 × Rd (or, z = ∞)
126(5)
4.3.2 Einstein-Maxwell-dilaton models
131(3)
4.3.3 Critical compressible phases with diverse z and θ
134(4)
4.3.4 Anomalous scaling of charge density
138(1)
4.4 Low energy spectrum of excitations
139(12)
4.4.1 Spectral weight: zero temperature
140(5)
4.4.2 Spectral weight: nonzero temperature
145(5)
4.4.3 Logarithmic violation of the area law of entanglement
150(1)
4.5 Fermions in the bulk I: `Classical' physics
151(7)
4.5.1 The holographic dictionary
152(1)
4.5.2 Fermions in semi-locally critical (z = ∞) backgrounds
153(2)
4.5.3 Semi-holography: One fermion decaying into a large N bath
155(3)
4.6 Fermions in the bulk II: Quantum effects
158(13)
4.6.1 Luttinger's theorem in holography
158(3)
4.6.2 1/N corrections
161(1)
4.6.2.1 Quantum oscillations
161(2)
4.6.2.2 Cooper pairing
163(2)
4.6.2.3 Corrections to the conductivity
165(1)
4.6.3 Endpoint of the near-horizon instability in the fluid approximation
166(5)
4.7 Magnetic fields
171(12)
4.7.1 d = 2: Hall transport and duality
172(4)
4.7.2 d = 3: Chern-Simons term and quantum phase transition
176(2)
Exercises
178(5)
5 Metallic transport without quasiparticles
183(82)
5.1 Metallic transport with quasiparticles
184(1)
5.2 The momentum bottleneck
184(3)
5.3 Thermoelectric conductivity matrix
187(3)
5.4 Hydrodynamic transport (with momentum)
190(13)
5.4.1 Relativistic hydrodynamics near quantum criticality
191(2)
5.4.2 Sound waves
193(2)
5.4.3 Transport coefficients
195(4)
5.4.4 Drude weights and conserved quantities
199(1)
5.4.5 General linearized hydrodynamics
200(3)
5.5 Weak momentum relaxation I: Inhomogeneous hydrodynamics
203(4)
5.6 Weak momentum relaxation II: The memory matrix formalism
207(20)
5.6.1 The Drude conductivities
211(3)
5.6.2 The incoherent conductivities
214(3)
5.6.3 Transport in field-theoretic condensed matter models
217(3)
5.6.4 Transport in holographic compressible phases
220(3)
5.6.5 From holography to memory matrices
223(4)
5.7 Magnetotransport
227(5)
5.7.1 Weyl semimetals: Anomalies and magnetotransport
230(2)
5.8 Hydrodynamic transport (without momentum)
232(4)
5.9 Strong momentum relaxation I: `Mean-field' methods
236(8)
5.9.1 Metal-insulator transitions
239(2)
5.9.2 AC transport
241(1)
5.9.3 Thermoelectric conductivities
242(2)
5.10 Strong momentum relaxation II: Exact methods
244(7)
5.10.1 Analytic methods
244(4)
5.10.2 Numerical methods
248(3)
5.11 SYK models
251(14)
5.11.1 Fluctuations
253(3)
5.11.2 Higher dimensional models
256(2)
Exercises
258(7)
6 Symmetry broken phases
265(38)
6.1 Condensed matter systems
266(1)
6.2 The Breitenlohner-Freedman bound and IR instabilities
267(3)
6.3 Holographic superconductivity
270(6)
6.3.1 The phase transition
270(3)
6.3.2 The condensed phase
273(3)
6.4 Response functions in the ordered phase
276(10)
6.4.1 Conductivity
276(4)
6.4.2 Superfluid hydrodynamics
280(2)
6.4.3 Destruction of long range order in low dimension
282(2)
6.4.4 Fermions
284(2)
6.5 Beyond charged scalars
286(10)
6.5.1 Homogeneous phases
286(1)
6.5.1.1 p-wave superconductors from Yang-Mills theory
286(2)
6.5.1.2 Challenges for d-wave superconductors
288(2)
6.5.2 Spontaneous breaking of translation symmetry
290(1)
6.5.2.1 Helical instabilities
290(2)
6.5.2.2 Striped order
292(2)
6.5.2.3 Crystalline order
294(1)
6.5.2.4 Conductivity
295(1)
6.6 Zero temperature BKT transitions
296(7)
Exercises
299(4)
7 Further topics
303(26)
7.1 Probe branes
304(11)
7.1.1 Microscopics and effective bulk action
304(3)
7.1.2 Backgrounds
307(1)
7.1.3 Spectral weight at nonzero momentum and `zero sound'
308(3)
7.1.4 Linear and nonlinear conductivity
311(3)
7.1.5 Defects and impurities
314(1)
7.2 Disordered fixed points
315(3)
7.3 Out of equilibrium I: Quenches
318(6)
7.3.1 Uniform quenches
319(2)
7.3.2 Spatial quenches
321(2)
7.3.3 Kibble-Zurek mechanism and beyond
323(1)
7.4 Out of equilibrium II: Turbulence
324(5)
Exercises
327(2)
8 Connections to experiments
329(10)
8.1 Probing non-quasiparticle physics
330(5)
8.1.1 Parametrizing hydrodynamics
330(1)
8.1.2 Parametrizing low energy spectral weight
331(1)
8.1.3 Parametrizing quantum criticality
332(1)
8.1.4 Ordered phases and insulators
333(1)
8.1.5 Fundamental bounds on transport
334(1)
8.2 Experimental realizations of strange metals
335(4)
8.2.1 Graphene
335(1)
8.2.2 Cuprates
336(1)
8.2.3 Pnictides
337(1)
8.2.4 Heavy fermions
338(1)
Bibliography 339(44)
Index 383