|
|
1 | (58) |
|
1.1 Why Do We Want Machines to Learn |
|
|
1 | (4) |
|
1.2 Pattern Classification |
|
|
5 | (15) |
|
1.2.1 Pattern Recognition Stages |
|
|
5 | (2) |
|
|
7 | (3) |
|
1.2.3 Canonical Model of Classifier |
|
|
10 | (1) |
|
1.2.4 Learning Information |
|
|
11 | (3) |
|
1.2.5 Uncertainty Representation |
|
|
14 | (6) |
|
|
20 | (7) |
|
|
20 | (1) |
|
|
21 | (2) |
|
|
23 | (2) |
|
|
25 | (2) |
|
|
27 | (18) |
|
1.4.1 Bayesian Classifiers |
|
|
27 | (4) |
|
1.4.2 Minimal Distance Classifiers |
|
|
31 | (2) |
|
1.4.3 Rule-Based Classifiers |
|
|
33 | (7) |
|
|
40 | (4) |
|
1.4.5 Support Vector Machines |
|
|
44 | (1) |
|
1.5 Methods of Classifier Evaluation |
|
|
45 | (10) |
|
|
45 | (2) |
|
|
47 | (1) |
|
1.5.3 Evaluation of Binary Classifiers |
|
|
48 | (2) |
|
|
50 | (1) |
|
1.5.5 Assessing Classifier Error |
|
|
51 | (1) |
|
1.5.6 Comparing Classifiers |
|
|
52 | (3) |
|
|
55 | (4) |
|
2 Data and Knowledge Hybridization |
|
|
59 | (36) |
|
|
59 | (1) |
|
2.2 Data and Knowledge Quality |
|
|
60 | (2) |
|
|
62 | (2) |
|
2.3.1 Knowledge Consistency |
|
|
62 | (2) |
|
|
64 | (1) |
|
2.3.3 Data and Knowledge Consistency |
|
|
64 | (1) |
|
|
64 | (11) |
|
2.4.1 Unification a Learning Set into a Rules |
|
|
65 | (2) |
|
2.4.2 Unification Rules into a Learning Set |
|
|
67 | (1) |
|
2.4.3 Unification Using Hyperrectangles |
|
|
68 | (7) |
|
2.5 Cost-Sensitive Classifier |
|
|
75 | (5) |
|
2.5.1 Cost Sensitive Decision Tree Induction |
|
|
76 | (1) |
|
2.5.2 Cost Sensitive Decision Tree Induction with Cost Limit |
|
|
76 | (2) |
|
2.5.3 Experiments on the Cost-Sensitive Decision Tree |
|
|
78 | (2) |
|
|
80 | (15) |
|
|
82 | (2) |
|
2.6.2 Dataset Partitioning |
|
|
84 | (2) |
|
2.6.3 Privacy Preserving Minimal Distance Algorithms |
|
|
86 | (2) |
|
2.6.4 Experiments on Privacy Preserving Minimal Distance Algorithms |
|
|
88 | (7) |
|
3 Classifier Hybridization |
|
|
95 | (46) |
|
|
95 | (3) |
|
|
98 | (1) |
|
|
99 | (13) |
|
|
100 | (4) |
|
3.3.2 Diversity Assurance |
|
|
104 | (6) |
|
|
110 | (2) |
|
|
112 | (21) |
|
|
113 | (1) |
|
3.4.2 Fuser Based on Classifier Responses |
|
|
113 | (8) |
|
3.4.3 Fusers Based on Discriminants |
|
|
121 | (12) |
|
3.5 Hybrid Classifier Learning for Parametric Case |
|
|
133 | (8) |
|
4 Chosen Applications of Hybrid Classifiers |
|
|
141 | (38) |
|
4.1 Feature Space Splitting |
|
|
141 | (14) |
|
|
143 | (1) |
|
4.1.2 Clustering and Selection Algorithm |
|
|
143 | (2) |
|
4.1.3 Adaptive Splitting and Selection |
|
|
145 | (10) |
|
4.2 Hybrid One-Class Classification |
|
|
155 | (11) |
|
4.2.1 One-Class Classification |
|
|
156 | (2) |
|
4.2.2 Combining One-Class Classifiers |
|
|
158 | (6) |
|
4.2.3 Assuring Diversity of One-Class Classifier Ensembles |
|
|
164 | (2) |
|
4.3 Imbalanced Classification |
|
|
166 | (2) |
|
4.4 Hybrid Classifiers for Non-stationary Environment |
|
|
168 | (11) |
|
|
169 | (1) |
|
|
170 | (1) |
|
|
170 | (1) |
|
|
171 | (1) |
|
|
172 | (2) |
|
4.4.6 Weighted Aging Classifier Ensemble |
|
|
174 | (5) |
|
|
179 | (2) |
|
|
181 | (10) |
|
|
181 | (3) |
|
|
184 | (7) |
References |
|
191 | (24) |
Index |
|
215 | |