About the Companion Website |
|
xiii | |
|
|
1 | (4) |
|
2 Continuous-Domain Signals and Systems |
|
|
5 | (36) |
|
|
5 | (2) |
|
2.2 Multidimensional Signals |
|
|
7 | (3) |
|
|
7 | (1) |
|
|
7 | (3) |
|
2.2.3 Real Exponential Functions |
|
|
10 | (1) |
|
|
10 | (3) |
|
|
12 | (1) |
|
2.2.6 Separable and Isotropic Functions |
|
|
13 | (1) |
|
2.3 Visualization of Two-Dimensional Signals |
|
|
13 | (1) |
|
2.4 Signal Spaces and Systems |
|
|
14 | (1) |
|
2.5 Continuous-Domain Linear Systems |
|
|
15 | (7) |
|
|
15 | (4) |
|
2.5.2 Linear Shift-Invariant Systems |
|
|
19 | (1) |
|
2.5.3 Response of a Linear System |
|
|
20 | (1) |
|
2.5.4 Response of a Linear Shift-Invariant System |
|
|
20 | (2) |
|
2.5.5 Frequency Response of an LSI System |
|
|
22 | (1) |
|
2.6 The Multidimensional Fourier Transform |
|
|
22 | (11) |
|
2.6.1 Fourier Transform Properties |
|
|
23 | (4) |
|
2.6.2 Evaluation of Multidimensional Fourier Transforms |
|
|
27 | (3) |
|
2.6.3 Two-Dimensional Fourier Transform of Polygonal Zero-One Functions |
|
|
30 | (3) |
|
2.6 A Fourier Transform of a Translating Still Image |
|
|
33 | (1) |
|
2.7 Further Properties of Differentiation and Related Systems |
|
|
33 | (4) |
|
2.7.1 Directional Derivative |
|
|
34 | (1) |
|
|
34 | (1) |
|
2.7.3 Filtered Derivative Systems |
|
|
35 | (2) |
|
|
37 | (4) |
|
3 Discrete-Domain Signals and Systems |
|
|
41 | (28) |
|
|
41 | (1) |
|
|
42 | (4) |
|
|
42 | (2) |
|
3.2.2 Properties of Lattices |
|
|
44 | (1) |
|
3.2.3 Examples of 2D and 3D Lattices |
|
|
44 | (2) |
|
|
46 | (1) |
|
3.4 Signals Denned on Lattices |
|
|
47 | (1) |
|
3.5 Special Multidimensional Signals on a Lattice |
|
|
48 | (3) |
|
|
48 | (1) |
|
|
49 | (2) |
|
3.6 Linear Systems Over Lattices |
|
|
51 | (1) |
|
3.6.1 Response of a Linear System |
|
|
51 | (1) |
|
|
52 | (1) |
|
3.7 Discrete-Domain Fourier Transforms Over a Lattice |
|
|
52 | (7) |
|
3.7.1 Definition of the Discrete-Domain Fourier Transform |
|
|
52 | (1) |
|
3.7.2 Properties of the Multidimensional Fourier Transform Over a Lattice Λ |
|
|
53 | (4) |
|
3.7.3 Evaluation of Forward and Inverse Discrete-Domain Fourier Transforms |
|
|
57 | (2) |
|
3.8 Finite Impulse Response (FIR) Filters |
|
|
59 | (8) |
|
|
66 | (1) |
|
|
67 | (2) |
|
4 Discrete-Domain Periodic Signals |
|
|
69 | (24) |
|
|
69 | (1) |
|
|
69 | (3) |
|
4.3 Linear Shift-Invariant Systems |
|
|
72 | (1) |
|
4.4 Discrete-Domain Periodic Fourier Transform |
|
|
73 | (4) |
|
4.5 Properties of the Discrete-Domain Periodic Fourier Transform |
|
|
77 | (4) |
|
4.6 Computation of the Discrete-Domain Periodic Fourier Transform |
|
|
81 | (6) |
|
|
81 | (1) |
|
4.6.2 Selection of Coset Representatives |
|
|
82 | (5) |
|
4.7 Vector Space Representation of Images Based on the Discrete-Domain Periodic Fourier Transform |
|
|
87 | (3) |
|
4.7.1 Vector Space Representation of Signals with Finite Extent |
|
|
87 | (1) |
|
4.7.2 Block-Based Vector-Space Representation |
|
|
88 | (2) |
|
|
90 | (3) |
|
5 Continuous-Domain Periodic Signals |
|
|
93 | (14) |
|
|
93 | (1) |
|
5.2 Continuous-Domain Periodic Signals |
|
|
93 | (1) |
|
5.3 Linear Shift-Invariant Systems |
|
|
94 | (2) |
|
5.4 Continuous-Domain Periodic Fourier Transform |
|
|
96 | (1) |
|
5.5 Properties of the Continuous-Domain Periodic Fourier Transform |
|
|
96 | (4) |
|
5.6 Evaluation of the Continuous-Domain Periodic Fourier Transform |
|
|
100 | (5) |
|
|
105 | (2) |
|
6 Sampling, Reconstruction and Sampling Theorems for Multidimensional Signals |
|
|
107 | (18) |
|
|
107 | (1) |
|
6.2 Ideal Sampling and Reconstruction of Continuous-Domain Signals |
|
|
107 | (3) |
|
|
110 | (2) |
|
6.4 Practical Reconstruction |
|
|
112 | (1) |
|
6.5 Sampling and Periodization of Multidimensional Signals and Transforms |
|
|
113 | (3) |
|
6.6 Inverse Fourier Transforms |
|
|
116 | (3) |
|
6.6.1 Inverse Discrete-Domain Aperiodic Fourier Transform |
|
|
117 | (1) |
|
6.6.2 Inverse Continuous-Domain Periodic Fourier Transform |
|
|
118 | (1) |
|
6.6.3 Inverse Continuous-Domain Fourier Transform |
|
|
119 | (1) |
|
6.7 Signals and Transforms with Finite Support |
|
|
119 | (2) |
|
6.7.1 Continuous-Domain Signals with Finite Support |
|
|
119 | (1) |
|
6.7.2 Discrete-Domain Aperiodic Signals with Finite Support |
|
|
120 | (1) |
|
6.7.3 Band-Limited Continuous-Domain Γ-Periodic Signals |
|
|
121 | (1) |
|
|
121 | (4) |
|
7 Light and Color Representation in Imaging Systems |
|
|
125 | (38) |
|
|
125 | (1) |
|
|
125 | (3) |
|
7.3 The Space of Light Stimuli |
|
|
128 | (1) |
|
7.4 The Color Vector Space |
|
|
129 | (18) |
|
7.4.1 Properties of Metamerism |
|
|
130 | (2) |
|
7.4.2 Algebraic Condition for Metameric Equivalence |
|
|
132 | (3) |
|
7.4.3 Extension of Metameric Equivalence to A |
|
|
135 | (1) |
|
7.4.4 Definition of the Color Vector Space |
|
|
135 | (2) |
|
7.4.5 Bases for the Vector Space C |
|
|
137 | (1) |
|
7.4.6 Transformation of Primaries |
|
|
138 | (2) |
|
7.4.7 The CIE Standard Observer |
|
|
140 | (2) |
|
7.4.8 Specification of Primaries |
|
|
142 | (2) |
|
7.4.9 Physically Realizable Colors |
|
|
144 | (3) |
|
7.5 Color Coordinate Systems |
|
|
147 | (11) |
|
|
147 | (1) |
|
7.5.2 Luminance and Chromaticity |
|
|
147 | (6) |
|
7.5.3 Linear Color Representations |
|
|
153 | (2) |
|
7.5.4 Perceptually Uniform Color Coordinates |
|
|
155 | (2) |
|
7.5.5 Display Referred Coordinates |
|
|
157 | (1) |
|
7.5.6 Luma-Color-Difference Representation |
|
|
158 | (1) |
|
|
158 | (5) |
|
8 Processing of Color Signals |
|
|
163 | (30) |
|
|
163 | (1) |
|
8.2 Continuous-Domain Systems for Color Images |
|
|
163 | (10) |
|
8.2.1 Continuous-Domain Color Signals |
|
|
163 | (3) |
|
8.2.2 Continuous-Domain Systems for Color Signals |
|
|
166 | (2) |
|
8.2.3 Frequency Response and Fourier Transform |
|
|
168 | (5) |
|
8.3 Discrete-Domain Color Images |
|
|
173 | (15) |
|
8.3.1 Color Signals With All Components on a Single Lattice |
|
|
173 | (2) |
|
8.3.1.1 Sampling a Continuous-Domain Color Signal Using a Single Lattice |
|
|
175 | (1) |
|
8.3.1.2 S-CIELAB Error Criterion |
|
|
175 | (5) |
|
8.3.2 Color Signals With Different Components on Different Sampling Structures |
|
|
180 | (8) |
|
8.4 Color Mosaic Displays |
|
|
188 | (5) |
|
|
193 | (22) |
|
|
193 | (1) |
|
9.2 What is a Random Field? |
|
|
194 | (1) |
|
|
195 | (4) |
|
9.3.1 Mean, Autocorrelation, Autocovariance |
|
|
195 | (3) |
|
9.3.2 Properties of the Autocorrelation Function |
|
|
198 | (1) |
|
|
199 | (1) |
|
9.4 Power Density Spectrum |
|
|
199 | (3) |
|
9.4.1 Properties of the Power Density Spectrum |
|
|
200 | (1) |
|
|
201 | (1) |
|
9.4.3 Spectral Density Matrix |
|
|
201 | (1) |
|
9.5 Filtering and Sampling of WSS Random Fields |
|
|
202 | (5) |
|
9.5.1 LSI Filtering of a Scalar WSS Random Field |
|
|
202 | (2) |
|
9.5.2 Why is Sƒ(u) Called a Power Density Spectrum? |
|
|
204 | (1) |
|
9.5.3 LSI Filtering of a WSS Color Random Field |
|
|
205 | (1) |
|
9.5.4 Sampling of a WSS Continuous-Domain Random Field |
|
|
206 | (1) |
|
9.6 Estimation of the Spectral Density Matrix |
|
|
207 | (7) |
|
|
214 | (1) |
|
10 Analysis and Design of Multidimensional FIR Filters |
|
|
215 | (22) |
|
|
215 | (1) |
|
10.2 Moving Average Filters |
|
|
215 | (2) |
|
|
217 | (3) |
|
10.4 Band-pass and Band-stop Filters |
|
|
220 | (5) |
|
10.5 Frequency-Domain Design of Multidimensional FIR Filters |
|
|
225 | (11) |
|
10.5.1 FIR Filter Design Using Windows |
|
|
226 | (3) |
|
10.5.2 FIR Filter Design Using Least-pth Optimization |
|
|
229 | (7) |
|
|
236 | (1) |
|
11 Changing the Sampling Structure of an Image |
|
|
237 | (18) |
|
|
237 | (1) |
|
|
237 | (2) |
|
|
239 | (6) |
|
|
245 | (3) |
|
11.5 Arbitrary Sampling Structure Conversion |
|
|
248 | (6) |
|
11.5.1 Sampling Structure Conversion Using a Common Superlattice |
|
|
248 | (3) |
|
11.5.2 Polynomial Interpolation |
|
|
251 | (3) |
|
|
254 | (1) |
|
12 Symmetry Invariant Signals and Systems |
|
|
255 | (34) |
|
12.1 LSI Systems Invariant to a Group of Symmetries |
|
|
255 | (14) |
|
12.1.1 Symmetries of a Lattice |
|
|
255 | (3) |
|
12.1.2 Symmetry-Group Invariant Systems |
|
|
258 | (3) |
|
12.1.3 Spaces of Symmetric Signals |
|
|
261 | (8) |
|
12.2 Symmetry-Invariant Discrete-Domain Periodic Signals and Systems |
|
|
269 | (13) |
|
12.2.1 Symmetric Discrete-Domain Periodic Signals |
|
|
270 | (1) |
|
12.2.2 Discrete-Domain Periodic Symmetry-Invariant Systems |
|
|
271 | (2) |
|
12.2.3 Discrete-Domain Symmetry-Invariant Periodic Fourier Transform |
|
|
273 | (9) |
|
12.3 Vector-Space Representation of Images Based on the Symmetry-Invariant Periodic Fourier Transform |
|
|
282 | (7) |
|
|
289 | (22) |
|
|
289 | (1) |
|
|
289 | (4) |
|
13.3 Properties of Lattices |
|
|
293 | (1) |
|
|
294 | (1) |
|
|
295 | (1) |
|
13.6 Cosets and the Quotient Group |
|
|
296 | (2) |
|
13.7 Basis Transformations |
|
|
298 | (4) |
|
13.7.1 Elementary Column Operations |
|
|
299 | (1) |
|
13.7.2 Hermite Normal Form |
|
|
300 | (2) |
|
|
302 | (2) |
|
13.9 Intersection and Sum of Lattices |
|
|
304 | (7) |
Appendix A Equivalence Relations |
|
311 | (2) |
Appendix B Groups |
|
313 | (2) |
Appendix C Vector Spaces |
|
315 | (4) |
Appendix D Multidimensional Fourier Transform Properties |
|
319 | (4) |
References |
|
323 | (6) |
Index |
|
329 | |