Update cookies preferences

E-book: Multilevel Modeling in Plain Language

3.69/5 (17 ratings by Goodreads)
  • Format: 160 pages
  • Pub. Date: 02-Nov-2015
  • Publisher: Sage Publications Ltd
  • Language: eng
  • ISBN-13: 9781473934313
  • Format - PDF+DRM
  • Price: 32,10 €*
  • * the price is final i.e. no additional discount will apply
  • Add to basket
  • Add to Wishlist
  • This ebook is for personal use only. E-Books are non-refundable.
  • Format: 160 pages
  • Pub. Date: 02-Nov-2015
  • Publisher: Sage Publications Ltd
  • Language: eng
  • ISBN-13: 9781473934313

DRM restrictions

  • Copying (copy/paste):

    not allowed

  • Printing:

    not allowed

  • Usage:

    Digital Rights Management (DRM)
    The publisher has supplied this book in encrypted form, which means that you need to install free software in order to unlock and read it.  To read this e-book you have to create Adobe ID More info here. Ebook can be read and downloaded up to 6 devices (single user with the same Adobe ID).

    Required software
    To read this ebook on a mobile device (phone or tablet) you'll need to install this free app: PocketBook Reader (iOS / Android)

    To download and read this eBook on a PC or Mac you need Adobe Digital Editions (This is a free app specially developed for eBooks. It's not the same as Adobe Reader, which you probably already have on your computer.)

    You can't read this ebook with Amazon Kindle

With a real focus on the practical, this book provides students with a step-by-step approach, plenty of real-life examples, and downloadable data and exercises on the accompanying study website to help take the fear and intimidation out of multilevel modeling



Have you been told you need to do multilevel modeling, but you can't get past the forest of equations? Do you need the techniques explained with words and practical examples so they make sense?

Help is here! This book unpacks these statistical techniques in easy-to-understand language with fully annotated examples using the statistical software Stata. The techniques are explained without reliance on equations and algebra so that new users will understand when to use these approaches and how they are really just special applications of ordinary regression. Using real life data, the authors show you how to model random intercept models and random coefficient models for cross-sectional data in a way that makes sense and can be retained and repeated. 

This book is the perfect answer for anyone who needs a clear, accessible introduction to multilevel modeling.

Reviews

I started to read the book with vivid interest because of the subject that too often does not find enough space in books which provide an overview of the most used statistical methods  leaving out those who are somewhat a little bit more elaborate. After a while I found that I had read many pages, as a story, in a short time, and, rethinking to the title of the book, I remembered there was a part saying ". In plain language". This is really genuine.





The Authors do really introduce the subject in a very friendly way, propose examples which facilitate the reader to better  understand and explain the output of Stata.  I suggest the book both to students and instructors who want a specific text on this subject. On the one hand, students will be not afraid of formula, considering that the book is centred on the understanding of the subjects, on the other hand, instructors will benefit in reviewing the path of the multilevel analysis very quickly.





It is a book for those who have some knowledge of statistic but I think that this aspect is definitely clear to the reader. The book is really complete in all the phases of a multilevel analysis, the "plain approach" helps the reader to grasp the idea,  follow the Stata commands and outputs and, finally, to interpret the findings. I think that the Authors were very skillful in preparing this book and added a very useful resource, in particular, for those who use Stata for their analysis. -- Dr. Gabriele Messina

About the Authors vii
1 What Is Multilevel Modeling and Why Should I Use It?
1(20)
2 Random Intercept Models: When intercepts vary
21(46)
3 Random Coefficient Models: When intercepts and coefficients vary
67(48)
4 Communicating Results to a Wider Audience
115(24)
References 139(4)
Index 143
Karen Robson is Assistant Professor in the Department and Marketing and Hospitality at Central Michigan University. She holds a BSc (Honsd) in Psychology from Queens University, and an MA in Psychology, an MBA and PhD from Simon Fraser University. Karens research investigates consumer innovativeness, including how consumers repurpose or use market offerings in ways not intended by the manufacturer and the intellectual property law implications of this practice. A recipient of the Joseph-Armand Bombardier Doctoral Scholarship, her work has appeared in journals such as MIS Quarterly Executive, Business Horizons, Journal of Marketing Education, Journal of Advertising Research, and Journal of Public Affairs.

David Pevalin is Professor in the School of Health and Human Sciences and Dean of Postgraduate Research and Education at the University of Essex. He previously served in the Merchant Navy, the City of London Police and the Royal Hong Kong Police. He studied part time at the University of Hong Kong before graduate studies at the University of Calgary, Canada. He returned to the UK in 1999 as Senior Research Officer at the Institute for Social and Economic Research at the University of Essex and joined his current School in 2003 after obtaining his PhD. He co-authored (with Karen Robson) The Stata Survival Manual (Open University Press), co-edited (with David Rose) The Researchers Guide to the National Statistics Socio-economic Classification (Sage), and authored research reports for the Department of Work and Pensions and the Health Development Agency. He has published papers in the Journal of Health and Social Behavior, British Journal of Sociology, Lancet, Public Health, and Housing Studies.